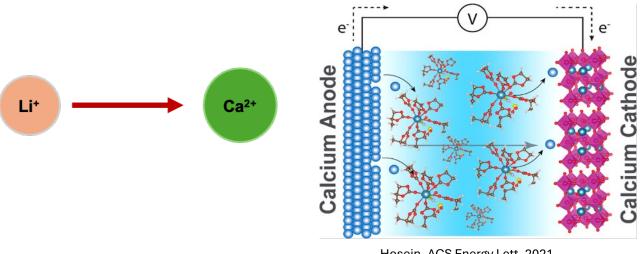


Fluoride Frameworks as Potential Calcium Battery Cathodes

<u>Dereje Bekele Tekliye</u> and Sai Gautam Gopalakrishnan Department of Materials Engineering, Indian Institute of Science <u>derejebekele@iisc.ac.in</u>

5D6 New Materials: 24th International Conference on Solid State Ionics (SSI24), 2024, QEII Centre - London, UK July 18, 2024


Calcium battery (CB): as alternative to Li-ion battery

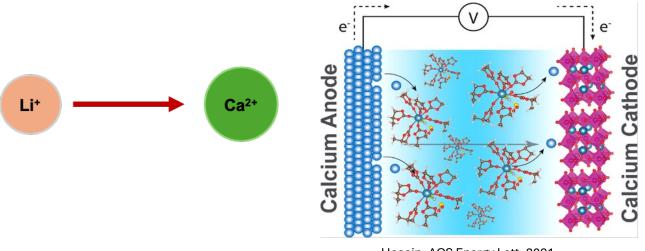
Why CB?

- Comparable standard reduction potential (-2.87 V vs SHE) with that of Li (-3.04 V)
- Ca²⁺: exchanges **2e**⁻ at a time instead of **1e**⁻ for Li⁺ case
- Use of **Ca metal anodes**: offer high energy density
- Ca is most abundant (~ 4.15%) than Li (~ 0.002%)¹

Calcium battery (CB): as alternative to Li-ion battery

Hosein, ACS Energy Lett. 2021

The development of CB is challenged by the lack of suitable cathodes exhibiting:


- Thermodynamic and cyclic stability
- Reasonable energy density
- Facile ionic mobility

Hence, it is crucial to design a better Cacathodes that address these challenges

Why CB?

- Comparable standard reduction potential (-2.87 V vs SHE) with that of Li (-3.04 V)
- Ca²⁺: exchanges **2e**⁻ at a time instead of **1e**⁻ for Li⁺ case
- Use of Ca metal anodes: offer high energy density
- Ca is most abundant (~ 4.15%) than Li (~ 0.002%)¹

Calcium battery (CB): as alternative to Li-ion battery

Hosein, ACS Energy Lett. 2021

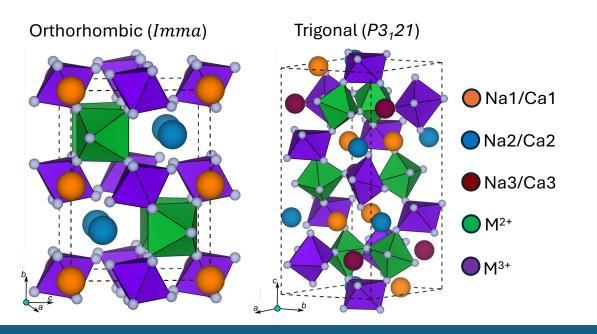
The development of CB is challenged by the lack of suitable cathodes exhibiting:

- Thermodynamic and cyclic stability
- Reasonable energy density
- Facile ionic mobility

Hence, it is crucial to design a better Cacathodes that address these challenges

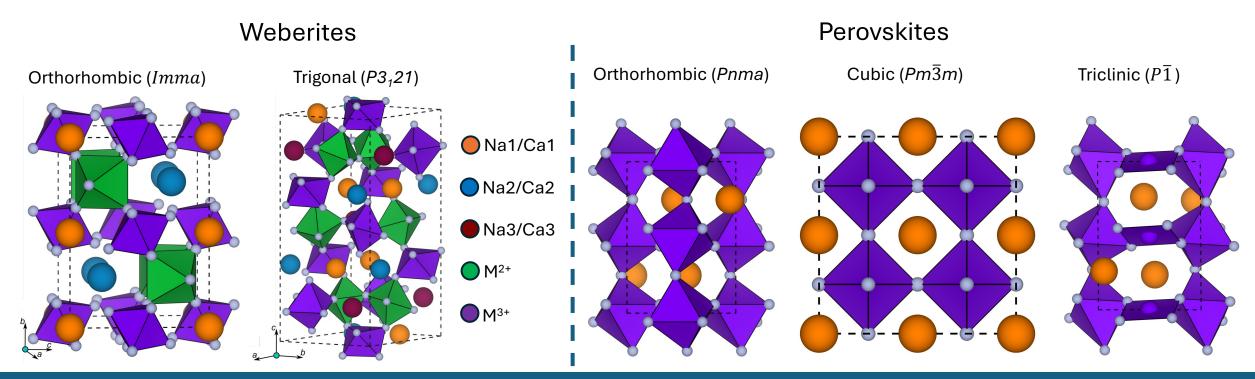
Why CB?

- Comparable standard reduction potential (-2.87 V vs SHE) with that of Li (-3.04 V)
- Ca²⁺: exchanges **2e**⁻ at a time instead of **1e**⁻ for Li⁺ case
- Use of Ca metal anodes: offer high energy density
- Ca is most abundant (~ 4.15%) than Li (~ 0.002%)¹


Important battery metrics:

- Energy density(Wh/Kg) = Voltage(V)x
 Capacity(mAh/g)
- Power density (C-rate): migration barrier

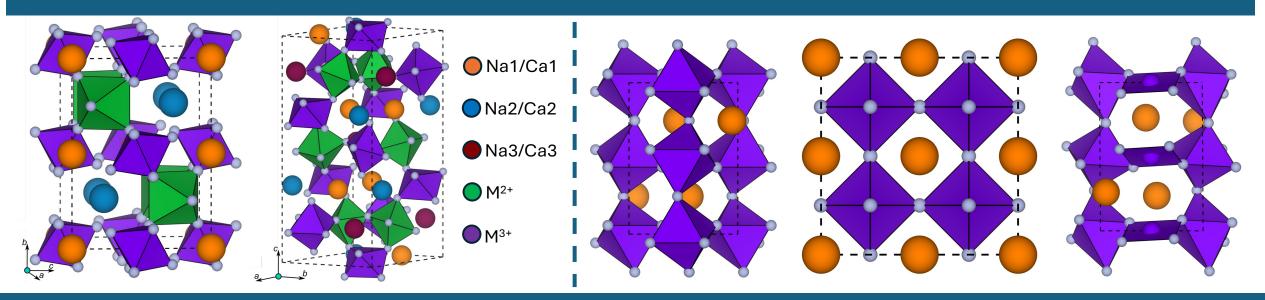
Fluoride frameworks as intercalation positive electrodes


- Role of fluorine (F) in fluoride positive electrodes
 - Fluorine's high electronegativity triggers inductive effect
 - Fluorine's lower molar mass compared to polyanions
- Weberites^{1,2} and perovskites³ fluorides explored as sodium ion battery cathodes
 - Three dimensional frameworks–exhibit high structural stability
 - Can be easily synthesized using topochemical synthesis method at low temperature

Weberites

Fluoride frameworks as intercalation positive electrodes

- Role of fluorine (F) in fluoride positive electrodes
 - Fluorine's high electronegativity triggers inductive effect
 - Fluorine's lower molar mass compared to polyanions
- Weberites^{1,2} and perovskites³ fluorides explored as sodium ion battery cathodes
 - Three dimensional frameworks–exhibit high structural stability
 - Can be easily synthesized using topochemical synthesis method at low temperature

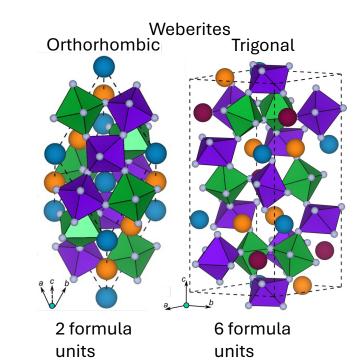


Fluoride frameworks as intercalation positive electrodes

- Role of fluorine (F) in fluoride positive electrodes
 - Fluorine's high electronegativity triggers inductive effect
 - Fluorine's lower molar mass compared to polyanions

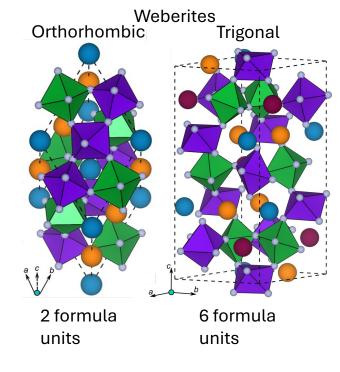
Given the ionic size similarity between **Na**⁺ (~1.02 Å) and **Ca**²⁺ (~1.00 Å), **weberite** and **perovskite**-based fluorides could be a potential **Ca-cathode**

$Ca_{x}M_{2}F_{7} \& Ca_{x}MF_{3}$, where M = Ti, V, Cr, Mn, Fe, Co, or Ni



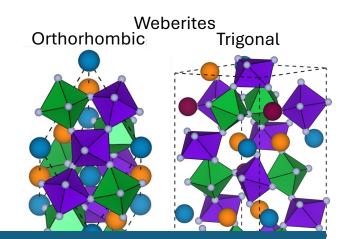
- Charge-neutrality ("zero charge") is maintained for Ca content of:
 - $0 \le x \le 1.5$ in $Ca_x M_2 F_7$ Weberites (M²⁺ \leftrightarrow M^{3.5+})
 - Charged: $Ca_x^{2+}M_2^{3.5+}F_7^{1-} \rightarrow 2*x + 3.5*2 1*7 = 0 \rightarrow x = 0 \rightarrow Ca_0M_2F_7$
 - Discharged: $Ca_x^{2+}M_2^{2+}F_7^{1-} \rightarrow 2*x + 2*2 1*7 = 0 \rightarrow x = 1.5 \rightarrow Ca_{1.5}M_2F_7$
 - $0 \le x \le 0.5$ in $Ca_x MF_3$ Perovskites ($M^{2+} \leftrightarrow M^{3+}$)
- Theoretical capacity (mAh/g): weberites (**320-351**)>perovskites (**231-255**)

- Charge-neutrality ("zero charge") is maintained for Ca content of:
 - $0 \le x \le 1.5$ in $Ca_x M_2 F_7$ Weberites (M²⁺ \leftrightarrow M^{3.5+})
 - Charged: $Ca_x^{2+}M_2^{3.5+}F_7^{1-} \rightarrow 2*x + 3.5*2 1*7 = 0 \rightarrow x = 0 \rightarrow Ca_0M_2F_7$
 - Discharged: $Ca_x^{2+}M_2^{2+}F_7^{1-} \rightarrow 2*x + 2*2 1*7 = 0 \rightarrow x = 1.5 \rightarrow Ca_{1.5}M_2F_7$
 - $0 \le x \le 0.5$ in $Ca_x MF_3$ Perovskites ($M^{2+} \leftrightarrow M^{3+}$)
- Theoretical capacity (mAh/g): weberites (**320-351**)>perovskites (**231-255**)
- Starting structures are obtained from ICSD
 - Na₂Fe₂F₇ for trigonal and Na₂NiFeF₇ for orthorhombic weberites
 - Na-based perovskites structures are considered for Ca-perovskites


- Charge-neutrality ("zero charge") is maintained for Ca content of:
 - $0 \le x \le 1.5$ in $Ca_x M_2 F_7$ Weberites ($M^{2+} \leftrightarrow M^{3.5+}$)
 - Charged: $Ca_x^{2+}M_2^{3.5+}F_7^{1-} \rightarrow 2*x + 3.5*2 1*7 = 0 \rightarrow x = 0 \rightarrow Ca_0M_2F_7$
 - Discharged: $Ca_x^{2+}M_2^{2+}F_7^{1-} \rightarrow 2*x + 2*2 1*7 = 0 \rightarrow x = 1.5 \rightarrow Ca_{1.5}M_2F_7$
 - 0≤x≤0.5 in Ca_xMF_3 Perovskites (M²⁺↔M³⁺)
- Theoretical capacity (mAh/g): weberites (**320-351**)>perovskites (**231-255**)
- Starting structures are obtained from ICSD
 - Na₂Fe₂F₇ for trigonal and Na₂NiFeF₇ for orthorhombic weberites
 - Na-based perovskites structures are considered for Ca-perovskites
 - Enumerate Ca-vacancy configurations using pymatgen¹

ICSD==inorganic crystal structure database SCAN==strongly constrained and appropriately normed

- Charge-neutrality ("zero charge") is maintained for Ca content of:
 - $0 \le x \le 1.5$ in $Ca_x M_2 F_7$ Weberites (M²⁺ \leftrightarrow M^{3.5+})
 - Charged: $Ca_x^{2+}M_2^{3.5+}F_7^{1-} \rightarrow 2*x + 3.5*2 1*7 = 0 \rightarrow x = 0 \rightarrow Ca_0M_2F_7$
 - Discharged: $Ca_x^{2+}M_2^{2+}F_7^{1-} \rightarrow 2*x + 2*2 1*7 = 0 \rightarrow x = 1.5 \rightarrow Ca_{1.5}M_2F_7$
 - 0≤x≤0.5 in Ca_xMF_3 Perovskites (M²⁺↔M³⁺)
- Theoretical capacity (mAh/g): weberites (**320-351**)>perovskites (**231-255**)
- Starting structures are obtained from ICSD
 - Na₂Fe₂F₇ for trigonal and Na₂NiFeF₇ for orthorhombic weberites
 - Na-based perovskites structures are considered for Ca-perovskites
 - Enumerate Ca-vacancy configurations using pymatgen¹

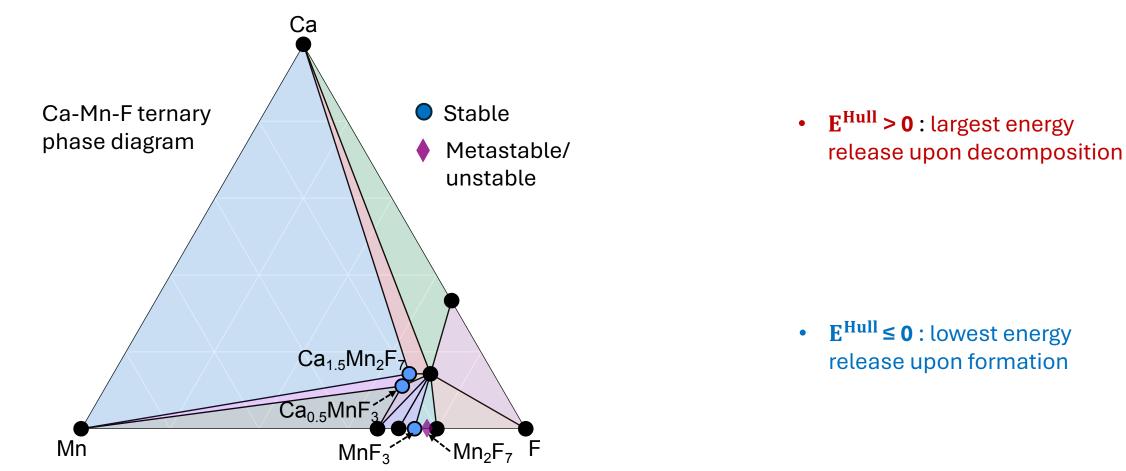


• Perform a SCAN+U^{2,3} calculations for 98+42=140 configurations to identify the ground state structure

ICSD==inorganic crystal structure database SCAN==strongly constrained and appropriately normed

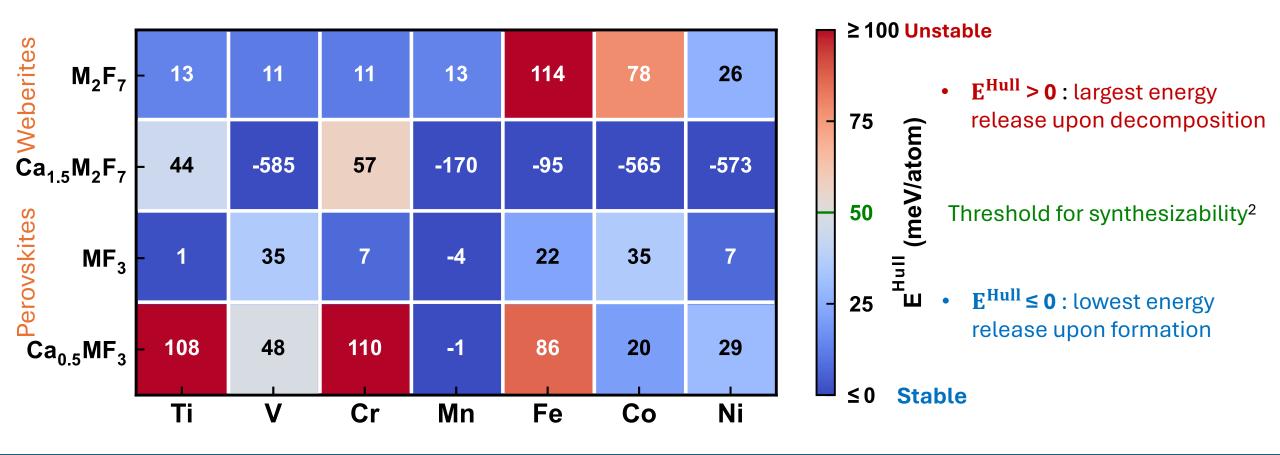
- Charge-neutrality ("zero charge") is maintained for Ca content of:
 - $0 \le x \le 1.5$ in $Ca_x M_2 F_7$ Weberites (M²⁺ \leftrightarrow M^{3.5+})
 - Charged: $Ca_x^{2+}M_2^{3.5+}F_7^{1-} \rightarrow 2*x + 3.5*2 1*7 = 0 \rightarrow x = 0 \rightarrow Ca_0M_2F_7$
 - Discharged: $Ca_x^{2+}M_2^{2+}F_7^{1-} \rightarrow 2*x + 2*2 1*7 = 0 \rightarrow x = 1.5 \rightarrow Ca_{1.5}M_2F_7$
 - **0**≤x≤**0.5** in Ca_xMF_3 Perovskites (M²⁺↔M³⁺)
- Theoretical capacity (mAh/g): weberites (320-351)>perovskites (231-255)

28 (weberite + perovskite) ground state structures are identified for further study as potential Ca-cathodes

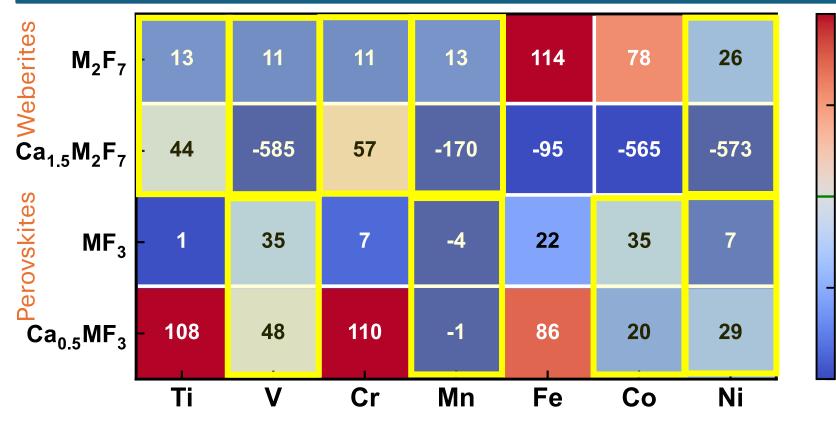


• Perform a SCAN+U^{2,3} calculations for 98+42=140 configurations to identify the ground state structure

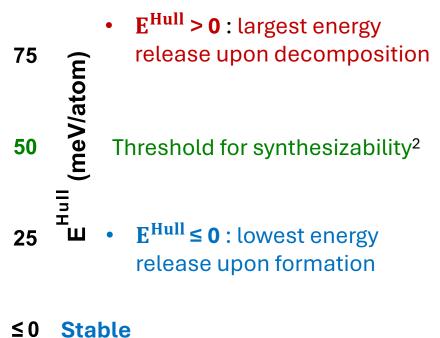
ICSD==inorganic crystal structure database SCAN==strongly constrained and appropriately normed


Several weberites & perovskites are stable/metastable

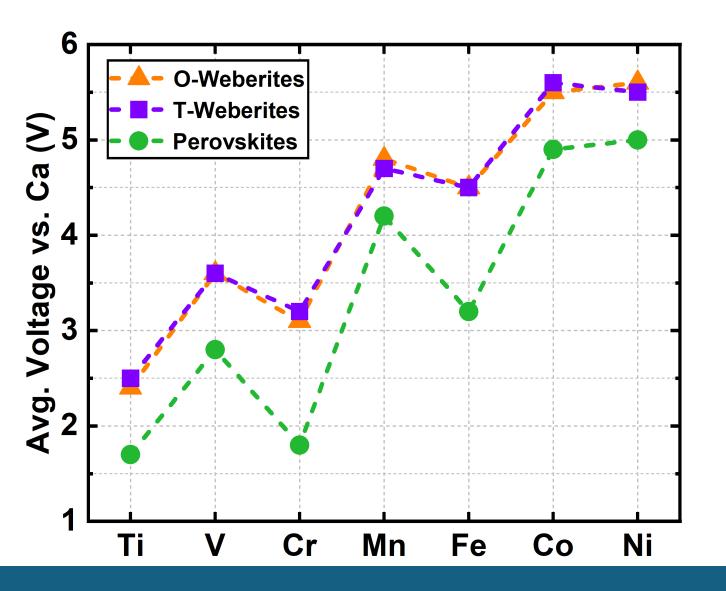
- Potential cathodes should have thermodynamically stable or metastable charged and discharged phases
- Stability is evaluated against the ground state energy of calculated elemental, binary, and ternary phases by quantifying energy above/bellow convex hull (E^{Hull}) using pymatgen¹

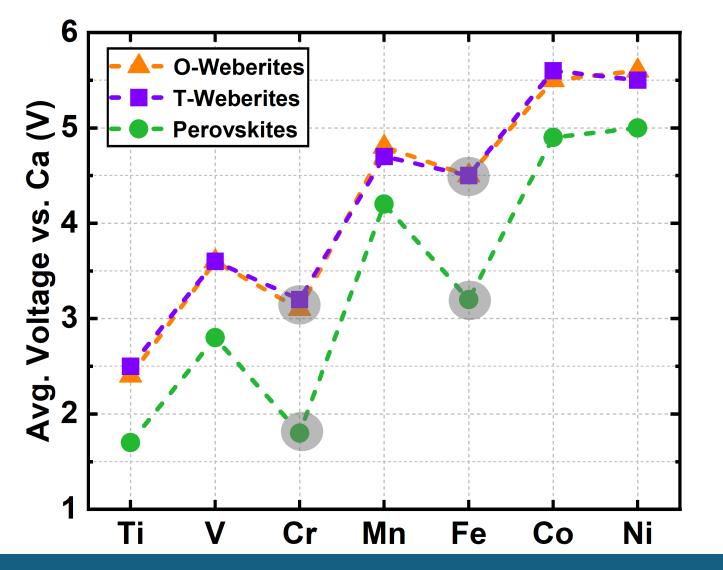

Several weberites & perovskites are stable/metastable

- Potential cathodes should have thermodynamically stable or metastable charged and discharged phases
- Stability is evaluated against the ground state energy of calculated **elemental**, **binary**, and **ternary** phases by quantifying energy above/bellow convex hull (E^{Hull}) using pymatgen¹



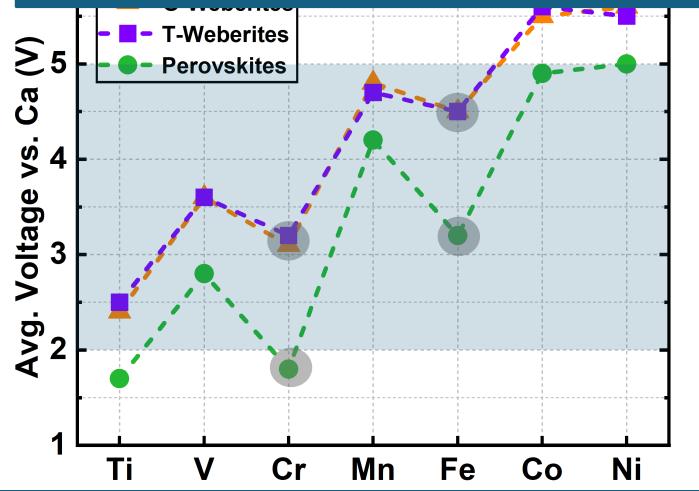
Several weberites & perovskites are stable/metastable


- Potential cathodes should have thermodynamically stable or metastable charged and discharged phases
- Ti, V, Cr, Mn, Ni-weberites and V, Mn, Co, Ni-perovskites are identified as candidate based on thermodynamic stability



Weberites consistently exhibits higher voltage

- Weberites voltage is higher than perovskites
- Both orthorhombic and trigonal weberites exhibit similar voltage profile

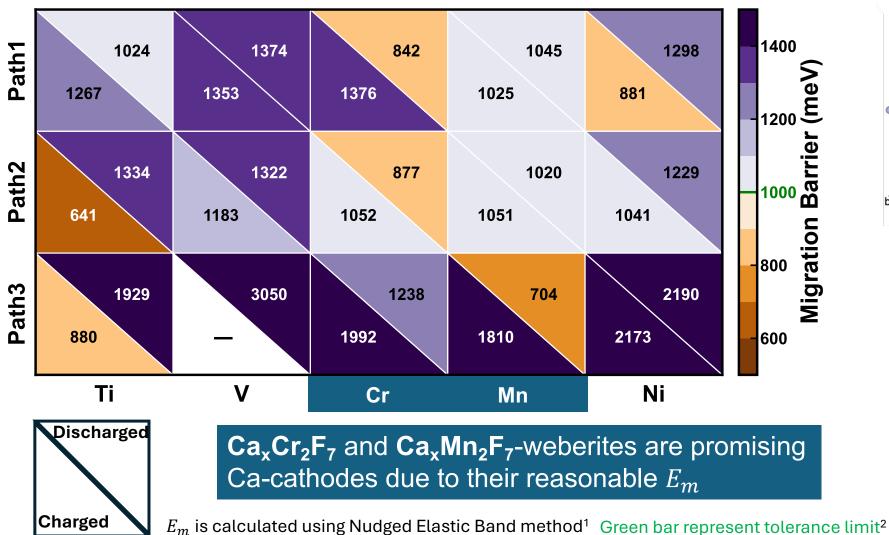

Weberites consistently exhibits higher voltage

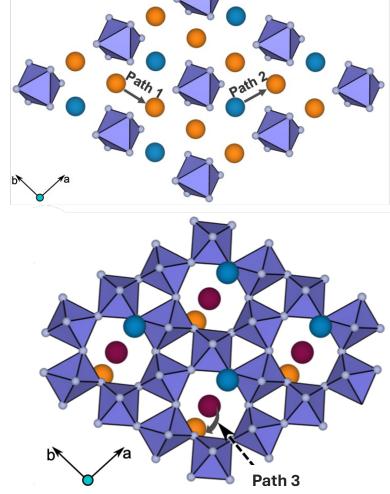
- Weberites voltage is higher than perovskites
- Both orthorhombic and trigonal weberites exhibit similar voltage profile
- From Ti-Ni voltage increment for both weberites and perovskites is *nonmonotonic*
 - "Local" minima at Cr & Fe, attributed to the stability of Cr³⁺ and Fe³⁺
- Ti- and Cr-perovskites have low voltage
 - Could be a potential anode instead of Ca-cathode

Weberites consistently exhibits higher voltage


Ti, V, Cr, Mn, Ni-weberites and V, Mn, Co, Ni-perovskites are identified as candidate based on stability and voltage calculations

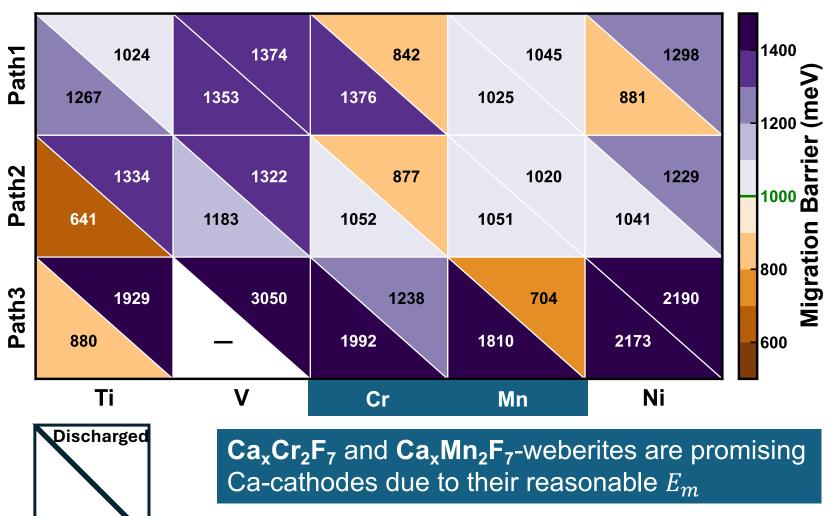
- Weberites voltage is higher than perovskites
- Both orthorhombic and trigonal weberites exhibit similar voltage profile
- From Ti-Ni voltage increment for both weberites and perovskites is *nonmonotonic*
 - "Local" minima at Cr & Fe, attributed to the stability of Cr³⁺ and Fe³⁺
- Ti- and Cr-perovskites have low voltage
 - Could be a potential anode instead of Ca-cathode


Migration barrier (E_m) : weberites exhibit reasonable E_m


Weberites (Trigonal)

Migration barrier (E_m) : weberites exhibit reasonable E_m

Weberites (Trigonal)

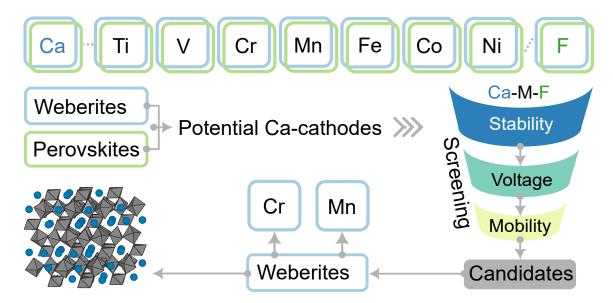


Migration barrier (E_m) : weberites exhibit reasonable E_m

Weberites (Trigonal)

Charged

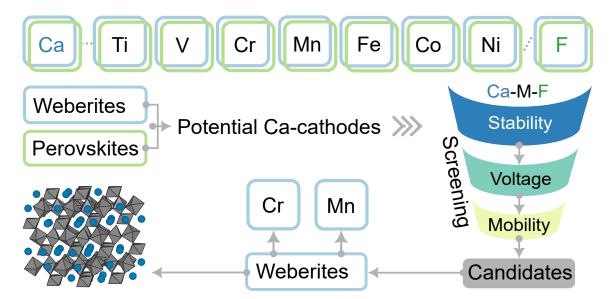
Perovskites


Compounds	Migration Barrier (meV)	
	Charged	Discharged
Ca_xVF_3	2,875	1,832
Ca _x MnF ₃		1,980
Ca_xCoF_3	1,666	
Ca _x NiF ₃	2,445	2,120

None of the perovskites are feasible as Ca-cathode due to their high E_m

 E_m is calculated using Nudged Elastic Band method¹ Green bar represent tolerance limit²

Conclusions and Acknowledgment


- Calcium batteries offer high energy density and abundant Ca resources, but lack suitable cathodes
- We explored the chemical space of weberite and perovskite-based transition metal fluorides as potential Ca-cathodes
- We identify Ca_xCr₂F₇ and Ca_xMn₂F₇ weberite-based fluoride frameworks as promising Ca-cathodes

Dereje Bekele Tekliye and Gopalakrishnan Sai Gautam: "Fluoride Frameworks as Potential Calcium Battery Cathodes" *J. Mater. Chem. A*, 2024, <u>https://doi.org/10.1039/D4TA02426E</u>

Conclusions and Acknowledgment

- Calcium batteries offer high energy density and abundant Ca resources, but lack suitable cathodes
- We explored the chemical space of weberite and perovskite-based transition metal fluorides as potential Ca-cathodes
- We identify Ca_xCr₂F₇ and Ca_xMn₂F₇ weberite-based fluoride frameworks as promising Ca-cathodes

Dereje Bekele Tekliye and Gopalakrishnan Sai Gautam: "Fluoride Frameworks as Potential Calcium Battery Cathodes" *J. Mater. Chem. A*, 2024, <u>https://doi.org/10.1039/D4TA02426E</u>

