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Calcium battery (CB): as alternative to Li-ion battery

Why CB? 
• Comparable standard reduction potential (−2.87 V vs 

SHE) with that of Li (-3.04 V) 
• Ca2+: exchanges 2e- at a time instead of 1e- for Li+ case 
• Use of Ca metal anodes: offer high energy density 
• Ca is most abundant (~ 4.15%) than Li (~ 0.002%)1

Hosein, ACS Energy Lett. 2021

1. https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust 2
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The development of CB is challenged by 
the lack of suitable cathodes exhibiting:
• Thermodynamic and cyclic stability
• Reasonable energy density 
• Facile ionic mobility

Hence, it is crucial to design a better Ca-
cathodes that address these challenges

1. https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust 2



Calcium battery (CB): as alternative to Li-ion battery

Why CB? 
• Comparable standard reduction potential (−2.87 V vs 

SHE) with that of Li (-3.04 V) 
• Ca2+: exchanges 2e- at a time instead of 1e- for Li+ case 
• Use of Ca metal anodes: offer high energy density 
• Ca is most abundant (~ 4.15%) than Li (~ 0.002%)1

Hosein, ACS Energy Lett. 2021

The development of CB is challenged by 
the lack of suitable cathodes exhibiting:
• Thermodynamic and cyclic stability
• Reasonable energy density 
• Facile ionic mobility

Hence, it is crucial to design a better Ca-
cathodes that address these challenges

1. https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust 2

Important battery metrics:
• Energy density(Wh/Kg) = Voltage(V)x 

Capacity(mAh/g)
• Power density (C-rate): migration barrier



Fluoride frameworks as intercalation positive electrodes

• Weberites1,2 and perovskites3 fluorides ⎯ explored as sodium ion battery cathodes
§ Three dimensional frameworks–exhibit high structural stability 
§ Can be easily synthesized using topochemical synthesis method at low temperature

31. Holger et al., Npj Comput. Mater, 2019 2. Park et al., Energy Environ. Sci., 2021 3. Kitajou et al., Electrochim. Acta, 2017
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• Role of fluorine (F) in fluoride positive electrodes
§ Fluorine’s high electronegativity triggers inductive effect
§ Fluorine’s lower molar mass compared to polyanions
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Perovskites

• Role of fluorine (F) in fluoride positive electrodes
§ Fluorine’s high electronegativity triggers inductive effect
§ Fluorine’s lower molar mass compared to polyanions

Given the ionic size similarity between Na+ (~1.02 Å) and Ca2+ (~1.00 Å), 
weberite and perovskite-based fluorides could be a potential Ca-cathode

CaxM2F7 & CaxMF3, where M = Ti, V, Cr, Mn, Fe, Co, or Ni
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Ca-cathode design: charge neutrality constraint
• Charge-neutrality (“zero charge”) is maintained for Ca content of:

§ 0≤x≤1.5  in CaxM2F7 — Weberites (M2+«M3.5+)
• Charged: Cax

2+M2
3.5+F7

1-  → 2∗x + 3.5∗2 - 1∗7 = 0	→ x = 0 → Ca0M2F7

• Discharged: Cax
2+M2

2+F7
1- → 2∗x + 2∗2 - 1∗7 = 0 →	 x = 1.5	→ Ca1.5M2F7

§ 0≤x≤0.5  in CaxMF3 — Perovskites (M2+ «M3+)

• Theoretical capacity (mAh/g): weberites (320-351)>perovskites (231-255)
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• Theoretical capacity (mAh/g): weberites (320-351)>perovskites (231-255)
• Starting structures are obtained from ICSD 

§ Na2Fe2F7 for trigonal and  Na2NiFeF7 for orthorhombic weberites
§ Na-based perovskites structures are considered for Ca-perovskites 
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28 (weberite + perovskite) ground state structures are 
identified for further study as potential Ca-cathodes

ICSD==inorganic crystal structure database SCAN==strongly constrained and appropriately normed



Ca-Mn-F ternary 
phase diagram

Stable
Metastable/
unstable

Several weberites & perovskites are stable/metastable
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• Potential cathodes should have thermodynamically stable or metastable charged and discharged phases
• Stability is evaluated against the ground state energy of calculated elemental, binary, and ternary phases by 

quantifying energy above/bellow convex hull (𝐄𝐇𝐮𝐥𝐥) using pymatgen1

1. Ping Ong et al., Comput. Mater. Sci. 2013

• 𝐄𝐇𝐮𝐥𝐥 > 0 : largest energy 
release upon decomposition

• 𝐄𝐇𝐮𝐥𝐥  ≤ 0 : lowest energy 
release upon formation

Ca

Mn F

Ca1.5Mn2F7

Mn2F7MnF3

Ca0.5MnF3
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• 𝐄𝐇𝐮𝐥𝐥  ≤ 0 : lowest energy 
release upon formation
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• 𝐄𝐇𝐮𝐥𝐥  ≤ 0 : lowest energy 
release upon formation

Ti, V, Cr, Mn, Ni-weberites and V, Mn, Co, Ni-perovskites are 
identified as candidate based on thermodynamic stability
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Weberites consistently exhibits higher voltage
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• Weberites voltage is higher than perovskites 

• Both orthorhombic and trigonal weberites 
exhibit similar voltage profile
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§ “Local” minima at Cr & Fe, attributed to 

the stability of Cr3+ and Fe3+

• Ti- and Cr-perovskites have low voltage
§ Could be a potential anode instead of 

Ca-cathode
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• Weberites voltage is higher than perovskites 

• Both orthorhombic and trigonal weberites 
exhibit similar voltage profile

• From Ti-Ni voltage increment for both 
weberites and perovskites is nonmonotonic
§ “Local” minima at Cr & Fe, attributed to 

the stability of Cr3+ and Fe3+

• Ti- and Cr-perovskites have low voltage
§ Could be a potential anode instead of 

Ca-cathode

Ti, V, Cr, Mn, Ni-weberites and V, Mn, Co, Ni-perovskites are 
identified as candidate based on stability and voltage calculations
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Migration barrier (𝐸!): weberites exhibit reasonable 𝐸!
Weberites (Trigonal)
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𝐸!	is calculated using Nudged Elastic Band method1 Green bar represent tolerance limit2
Path 3
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𝐸!	is calculated using Nudged Elastic Band method1 Green bar represent tolerance limit2

Cr                  Mn  

Compounds Migration Barrier (meV)

Charged Discharged

CaxVF3 2,875 1,832
CaxMnF3 -- 1,980
CaxCoF3 1,666 --
CaxNiF3 2,445 2,120

None of the perovskites are 
feasible as Ca-cathode due to 
their high 𝐸! 

Perovskites

Weberites (Trigonal)
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