

भारतीय विज्ञान संस्थान

Exploration of NaSICON frameworks as calcium-ion battery cathodes

FOMAD 2023

Dereje Bekele Tekliye <u>derejebekele@iisc.ac.in</u> PhD Student, 2021–Present

Advisor: Prof. Sai Gautam Gopalakrishnan Department of Materials Engineering Indian Institute of Science (IISc) April 29, 2023

Modern Li-ion Battery (LIB)

LIBs: the state-of-the-art battery technology

- Widely utilized in electric vehicle, portable electronics, smart grids
- Plays a major role in the transition towards clean energy

Important battery metrics

- Energy density(Wh/Kg) = Voltage(V) x Capacity(mAh/g)
- Rate(C): how fast is the charge/ discharge process (ion mobility)

Challenges

- High cost: Li is not abundant
- Safety: catches fire
- Approaching fundamental limits

Multivalent Ca-ion battery (CIB): as alternative to LIBs

Why Ca?

- Ca²⁺: exchanges 2e⁻ at a time instead of 1e⁻ for Li⁺ case
 - Hence offers high energy density
- Ca is most abundant (~ 4.1%) than Li (~ 0.0017%)
- Comparable standard reduction potential (-2.87V vs SHE) with that of Li (-3.04V)
- Use of Ca metal anodes: higher volumetric energy density

Ca-cathode design challenges:

- Thermodynamically stable
- High energy density
- High ionic mobility
- Good cycle life

NaSICON: polyanionic framework with robust structural stability

- Known for their excellent ionic conductivity
- Widely explored as Na-electrode and solid electrolyte
- Usually crystallize in rhombohedral structure
 - $Na_{1+x}Zr_2P_{3-x}Si_xO_{12}$, (0 $\le x \le 3$) NaSICON = sodium superionic conductor
 - $A_xM_2(ZO_4)_3$: A = Na, Li etc., M = transition metals, Z= Si, P, S etc.
- MO₆ polyhedra is coordinated via corner sharing with ZO₄ tetrahedral

NaSICON: polyanionic framework with robust structural stability

- Known for their excellent ionic conductivity
- Widely explored as Na-electrode and solid electrolyte
- Usually crystallize in rhombohedral structure
 - $Na_{1+x}Zr_2P_{3-x}Si_xO_{12}$, (0 $\leq x \leq 3$) NaSICON = sodium superionic conductor

Given the similar ionic radius of Na⁺ (~1.02 Å)¹ and Ca²⁺ (~1.00 Å), **NaSICON** could be a potential **Ca-cathode**

 Motivated by experimental evidence that NaV₂(PO₄)₃ intercalates Ca ion (Kim et al., ACS Energy Lett. 2020)

 $Ca_{x}M_{2}(ZO_{4})_{3}$: where M = Ti, V, Cr, Mn, Fe, Co or Ni and Z = Si, P, or S

- Charge-neutrality constraint is maintained for Ca contents of:
 - $2 \le x \le 4$ in $Ca_x M_2(SiO_4)_3$, $0.5 \le x \le 2.5$ in $Ca_x M_2(PO_4)_3$, $0 \le x \le 1$ in $Ca_x M_2(SO_4)_3$
- For example, Ca composition in Ca_xMn₂(SiO₄)₃ is calculated as follows:
 - Charged: $Ca_{\mathbf{x}}^{2+}Mn_{2}^{4+}(SiO_{4})_{3}^{4-} \rightarrow 2\cdot\mathbf{x} + 4\cdot2 + -4\cdot3 = 0, \rightarrow \mathbf{x} = \mathbf{2}$
 - Discharged: $Ca_x^{2+}Mn_2^{2+}(SiO_4)_3^{4-} \rightarrow 2\cdot x + 2\cdot 2 4\cdot 3 = 0$, $\rightarrow x = 4$

^{1.} Shannon et al., Acta Crystallogr. B 1969

Generating Ca-NaSICON compositions

Computational methods

- All spin-polarized total ground state energy is calculated using DFT
 - The Vienna *ab initio* simulation package (VASP¹) and projector-augmented-wave (PAW²) potential is used
 - Hubbard U corrected strongly constrained and appropriately normed^{3,5} (SCAN+U)
 - U value is obtained from previous work⁴
 - 520 eV plane wave kinetic energy cutoff and minimum 32/Å k-point density is used
 - 10⁻⁵ eV (total energy) and 10.031 eV/Å (forces) convergence criteria were used
- Average voltage is calculated using Nernst equation:

$$\langle V \rangle = -\frac{\Delta G}{2(x-y)F} \approx -\frac{E(Ca_x M_2(ZO_4)_3) - [E(Ca_x M_2(ZO_4)_3) + (x-y)\mu_{Ca}]}{2(x-y)F}$$

- Pymatgen package is used to construct 0 K convex hull of Ca-M-Z-O systems
- DFT-based NEB⁶ is used to calculate the migration barrier (E_m)

$$D \propto \exp\left(\frac{-E_m}{RT}\right)$$
 $D = diffusivity$
 $E_m = activation energy for migration$

- At least 48/Å (for endpoint) and 32/Å (for NEB) k-point density is used
- Between endpoints seven images are considered, with spring force constant of 5 eV/Å between images
- NEB converges if elastic band force of each image is less than I0.05I eV/Å

1. Kresse et al., Phys. Rev. B 1996 2. Blöchl et al., Phys. Rev. B 1994

Average voltage: increases monotonically from Ti to Ni except for SO₄

- Voltage is *monotonically* increasing from Ti-Ni for PO₄ and SiO₄
 - Consistent with the standard reduction potentials
- PO₄ voltage is consistently higher than SiO₄
 - Due to inductive effect
- SO₄ voltage increment is non-monotonic
 - "Local" minima at Cr and Fe, attributed to the stability of Cr³⁺ and Fe³⁺
- Ti-based PO₄ (1.6V), SiO₄ (1.0V) and SO₄ (1.4V) have low voltage and hence they are suitable for anode instead of cathode
- Theoretical capacity (Ni-Ti): C = nF/(3600xM) mAhg⁻¹
 - PO_4 (254-267) > SiO_4 (227-237) >> SO_4 (132-140)

8

Thermodynamic stability of Ca-NaSICONs

- Convex hull (phase diagram) is constructed for all Ca-NaSICONs¹
 - Convex hull: envelope of the lowest Gibbs energy state of the system
 - Phase diagram: for 21 charged and discharged Ca-NaSICONs

- Energy above/below convex hull (E^{Hull}):
 - E^{Hull} > 0 : indicates metastability/instability (energy release upon decomposition)
 - $E^{Hull} \leq 0$: indicates stability (energy release upon formation)

9

Several phosphates and sulfates are found to be stable Both charged and discharged phases should preferably be thermodynamically stable/metastable

• $Ca_xV_2(PO_4)_3$, $Ca_xMn_2(PO_4)_3$, $Ca_xMn_2(SO_4)_3$ and $Ca_xFe_2(SO_4)_3$ are found to be stable/metastable

- All SiO₄ are unstable: not a candidate for Ca-cathode
- Ca_{0.5}V₂(PO₄)₃ (~-8 meV/atom); NaV₂(PO₄)₃: experimentally synthesised
- Experimentally synthesised phases (Ti, Cr and Fe-SO₄) are predicted to be highly stable 1. Sun et al., Sci. Adv, 2016 D.B Tekliye et al., Chem. Mater., 2022

Migration barrier: energy difference between saddle point and lowest energy site

- · Ca-ion migration is sluggish compared to Na or Li-ion
 - · Likely due to the induced stronger electrostatic interaction
- Vacancy-mediated migration mechanism is considered
 - Ca1(Na1)-Ca2(Na2): established migration path in NaSICON

 E_m is calculated using GGA¹ due to a reasonable trade-off between a computational cost and accuracy²

1. Perdew et al., Phys. Rev. Lett. 1996 2. Devi et al., Npj Comput. Mater. 2022

Sulfates tends to have lower migration barrier

Overall, the E_m of Ca_xV₂(PO₄)₃, Ca_xMn₂(SO₄)₃ and Ca_xFe₂(SO₄)₃ lies below the tolerance limit, indicating facile Ca²⁺ diffusion within these frameworks

Conclusions and acknowledgments

- We explored the chemical space of Ca-NaSICON (Ca_xM₂(ZO₄)₃) as potential Ca cathodes
 - M = Ti, V, Cr, Mn, Fe, Co, or Ni, Z = Si, P, or S
- Based on our calculated average voltage, thermodynamic stability and migration barrier:
 - Ca_xV₂(PO₄)₃, Ca_xMn₂(SO₄)₃ and Ca_xFe₂(SO₄)₃
 found as promising Ca-Cathodes

Article

- All silicate-based Ca-NaSICONs are unstable
 - Unsuitable as Ca cathodes

pubs.acs.org/cm

Exploration of NaSICON Frameworks as Calcium-Ion Battery Electrodes

Dereje Bekele Tekliye, Ankit Kumar, Xie Weihang, Thelakkattu Devassy Mercy, Pieremanuele Canepa, and Gopalakrishnan Sai Gautam*

