Exploration of NaSICON Frameworks as Calcium-ion Battery Cathodes

Dereje Bekele Tekliye¹, Ankit Kumar¹, Xie Weihang², Thelakkattu Devassy Mercy³, Pieremanuele Canepa^{2,4}, Sai Gautam Gopalakrishnan¹

¹Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India ²Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore ³Vikram Sarabhai Space Centre, Thiruvananthapuram, 695022, Kerala, India ⁴Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117575, Singapore

INTRODUCTION

- Calcium-ion batteries (CIBs) show promise as alternative to the state-of-theart lithium-ion batteries
- Why Ca-based electrochemical system?
- Comparable standard reduction potential (-2.87 V vs SHE) with that of Li (-3.04 V)
- Use of Ca metal anodes—delivering high volumetric energy density
- Ca²⁺: exchange 2e⁻ instead of 1e- for Li⁺
- Ca is abundant (~ 4.15%) than Li (~ 0.002%) on Earth's crust—cost-effective
- However, the development of CIBs is challenged by the lack of suitable cathodes

NaSICON: Na Super-Ionic CONductor

Polyanionic framework with robust structural stability and excellent ionic conductivity

METHODS

- All density functional theory (DFT) calculations done with Vienna *ab initio* simulation package (VASP⁴)
 - Hubbard U corrected strongly constrained and appropriately normed (SCAN+U)⁵⁻⁷
 - 520 eV energy cutoff, 32/Å *k*-point density, 10⁻⁵ eV (energy) and |0.03| eV/Å (forces) convergence criteria were used
 - Average voltage is calculated using Nernst equation:

$$\langle V \rangle = -\frac{\Delta G}{2(x-y)F} \approx -\frac{E(Ca_x M_2(ZO_4)_3) - [E(Ca_y M_2(ZO_4)_3) + (x-y)\mu_{Ca}]}{2(x-y)F}$$

- Pymatgen package is used to construct 0 K convex hull of Ca-M-Z-O systems
- DFT-based nudged elastic band (NEB)⁸ for migration barrier (E_m) calculations
- NEB settings: 32/Å k-point, 7 images, spring force of 5 eV/ Å, converged within |0.05| eV/Å

RESULTS

Average voltages

- Widely explored as Na-electrode and solid electrolyte
- Usually crystallize in rhombohedral crystal structure
- $Na_{1+x}Zr_2P_{3-x}Si_xO_{12}$, $(0 \le x \le 3)$
- General formula: $A_x M_2(ZO_4)_3$, A = Na, Li etc., M = transition metals, Z= Si, P, S etc.

Theoretical capacity (mAh/g):

 $PO_4(254-267) > SiO_4(227-237) >> SO_4(132-140)$

NaSICON as Ca-ion battery cathodes?

- Given the similar ionic radius of Na⁺ (~1.02 Å) and Ca²⁺ (~1.00 Å), NaSICON could be a potential Ca-cathode
- Motivated by experimental evidence that $NaV_2(PO_4)_3$ (de)intercalates Ca^1

 $Ca_x M_2(ZO_4)_3$: where M = Ti, V, Cr, Mn, Fe, Co or Ni, and Z = Si, P, or S

Charge neutrality constraint

- Ca composition in NaSICON is constrained by the overall **charge neutrality** Ca composition in $Ca_{x}Mn_{2}(SiO_{4})_{3}$:
 - Charged: $Ca_{x}^{2+}Mn_{2}^{4+}(SiO_{4})_{3}^{4-} \rightarrow 2\cdot x + 4\cdot 2 4\cdot 3 = 0, \rightarrow x = 2$
 - Discharged: $Ca_x^{2+}Mn_2^{2+}(SiO_4)_3^{4-} \rightarrow 2\cdot x + 2\cdot 2 4\cdot 3 = 0, \rightarrow x = 4$
- Similarly
- $2 \le x \le 4$ in $Ca_x M_2(SiO_4)_3$
- $M^{4+} \leftrightarrow M^{2+}$ • 0.5≤x≤2.5 in Ca_xM₂(PO₄)₃
- $0 \le x \le 1$ in $Ca_x M_2(SO_4)_3 \longrightarrow M^{3+} \leftrightarrow M^{2+}$

Workflow for designing Ca-NaSICONs

- Voltage *monotonically* increases from Ti-Ni for PO_4 and SiO_4
- PO_4 voltage is consistently higher than SiO_4 -due to inductive effect
- SO₄ voltage variation is *non-monotonic*
- "Local" minima at Cr and Fe, attributed to the stability of Cr³⁺ and Fe³⁺

Thermodynamic stabilities

								 _ ≥	100
Ca ₂ M ₂ (SiO ₄) ₃	- 71	93	706	111	192	237	269		
Ca ₄ M ₂ (SiO ₄) ₃	- 93	100	450	83	93	84	110	- 7	5
Ca _{0.5} M ₂ (PO ₄) ₃	45	-8	12	-23	92	194	1173		
Ca _{2.5} M ₂ (PO ₄) ₃	- 129	54	108	-11	35	50	693])	, Hull
M ₂ (SO ₄) ₃	159	-107	-224	-74	-182	64	71	- 2	5
CaM ₂ (SO ₄) ₃	174	63	172	21	29	27	27		•
	Ti	v	Cr	Mn	Fe	Со	Ni		U

 $Ca_{x}Mn_{2}(PO_{4})_{3}$: not feasible as cathode due to its higher $Ca^{2+}E_{m}$

• The E_m of $Ca_{0.5}V_2(PO_4)_3$ (~951 meV) lies below the tolerance limit • In agreement with experimental (de)intercalation of Ca in NaV₂(PO₄)₃¹

• The E_m of $Ca_x Mn_2(SO_4)_3$ and $Ca_x Fe_2(SO_4)_3$ are within the tolerance limit

CONCLUSION

CIBs offer high energy density and abundant Ca resources but lack suitable cathodes

- We explored the chemical space of Ca-NaSICON as potential Ca cathodes
- Ca_xV₂(PO₄)₃, Ca_xMn₂(SO₄)₃ and Ca_xFe₂(SO₄)₃ identified as promising Ca-cathodes based on average voltage, thermodynamic stability, and migration barrier calculations

ACKNOWLEDGMENTS

1. Indian Space Research Organisation (ISRO), India

All SiO₄ are unstable with $E^{Hull} > 50 \text{ meV/atom}$ —not candidate We find V-, Mn-PO₄ and Mn-, Fe-SO₄ as stable/metastable Ca-NaSICONs, exhibiting E^{Hull} < 50 meV/atom—possible candidates as Ca-cathodes

2. National Research Foundation, Singapore

Ministry of Education, Singapore

Supercomputer Education and Research Centre, Indian Institute of Science

5. National Supercomputing Centre, Singapore

REFERENCES

(meV/atom)

Шн

I. Kim et al., ACS Energy Lett. 2020, 5, 3203–3211 2. M. Hellenbrandt, Crystallogr. Rev. 2004, 10, 17-22 3. S.P. Ong et al., Comput. Mater. Sci. 2013, 68, 314-319 4. G. Kresse and J. Hafner, Phys. Rev. B 1993, 48, 13115 5. J. Sun et al., Phys. Rev. Lett. 2015, 115, 036402 6. Dudarev et al., Phys. Rev. B 1998, 57, 1505 Sai Gautam et al., Phys. Rev. Mater. 2018, 2, 095401 8. D. Sheppard et al., J. Chem. Phys. 2008, 128, 134106 9. Wenhao Sun et al. Sci. Adv. 2016, 2, e1600225 10. Lu et al., Chem. Mater. 33, 2021, 5809-5821

Tekliye, D. B.; Kumar, A.; Weihang, X.; Mercy, T. D.; Canepa, P.; Sai Gautam, G. "Exploration of NaSICON Frameworks as Calcium-ion Battery Electrodes", Chem. Mater. 34(22), 10133-10143 (2022).

18th Asian Conference on Solid State Ionics (ACSSI-2024), Chennai, India

Dereje Bekele Tekliye PhD Student Advisor: Prof. Sai Gautam Gopalakrishnan Department of Materials Engineering **Indian Institute of Science** Email: <u>derejebekele@iisc.ac.in</u>

