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Climate change is here
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Droughts and floodsHeat waves and wildfires



Non-fossil-fuel options for mitigating climate change
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“With great power comes 
great responsibility
problem”
- Uncle Ben Zen

+Tidal, biofuels, etc.

When the sun doesn’t 
shine or the wind doesn’t 

blow

Materials form the performance-bottlenecks of most renewable energy devices: how do 
we understand and improve the material bottlenecks?
• Look at what material properties govern energy devices first
• How can we improve the amount of energy stored (i.e., energy density) and rate 

performance (i.e., power density) in a battery?
• Novel materials have to be synthesized first: thermodynamic stability!



How batteries work?



Batteries: what type do you need?
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How does the modern Li-ion battery work?

7Image adopted from B. Dunn et al., Science 2011

Li+

e-
Voltage (V): Potential to do 
work

Capacity (mAh): Amount of 
charge stored

Voltage*capacity: Energy 
stored

Rate (C): How fast can a 
battery be charged and 
discharged?

All performance metrics of 
a battery system are 
material dependent: 
anode, cathode, and 
electrolyte



Why beyond-Li-ion batteries?
Next generation of electric devices will benefit from 
higher energy density storage systems
• Multi-valent == More electrons (Ca2+, Mg2+, Al3+, etc.)
• Large volumetric energy density == Smaller batteries
• Li-ion technology approaching fundamental limits

• Safety, supply-chain constraints; limits on achievable energy 
densities
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Li+ Ca2+

Why Ca?
• Superior volumetric capacity for Ca metal (~2077 Ah/l) 

than Li in graphite (~800 Ah/l) 
• Ca is safer than Li, less constrained geopolitically
• Similar standard reduction potential for Ca (-2.87 V vs. 

SHE) vs. Li (-3.04 V)



Cathode design challenge

9
Ca: Find cathodes with reasonable voltage, capacity, and mobility, and be stable
If possible: find solid electrolytes with good stability and ionic mobility!

Good cycle life



Voltage, capacity, and rate in Li-ion batteries
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Li+

LiMO2

MO2

Charged cathode Discharged cathode

Δ𝐺!"#$%&'('#!)" = 𝐺*!+,! − 𝐺+,! − 𝐺*!

𝑉 = −
Δ𝐺!"#$%&'('#!)"

𝑛𝐹

Nernst Equation

(Do similar process for anode, take V difference!)

1 Li moved = 1 electron stored

Capacity ∝ # "# $%&'(
# ‘*+,$'-%+.’ ,0%$1

Rate: how fast can Li move (or diffuse) within electrode?

𝑅𝑎𝑡𝑒 ∝ 𝐷 = 𝐷) exp −
𝐸-
𝑘.𝑇



How do computations contribute?



Edison vs. Iron Man
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Trial and error of candidates in a lab
Simulate and identify candidates 

(on a transparent touch screen preferably)

Reality: Do an accelerated Edison on a 
(big) computer
• Key: predict/calculate material 

properties
• Can be smarter than simple trial-and-

error (human intuition +/- machine 
learning)



Density functional theory (DFT):
Predict material properties
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Total energy at 0 K ≈ Gibbs energy à Voltage + Stability

Density of states à Band gap à Electronic conductivity

Barriers for atomic migration à Kinetics à Rate

Defects à Electronic conductivity à Solid electrolytes

Large data using DFT à Use machine learning (ML)

Schrödinger equation: can’t be solved analytically for 
multi-electron systems (and not solvable numerically for 
most solids)

DFT: Approximate the many-body electronic wavefunction 
Hamiltonian (of Schrödinger) into a simpler, non-
interacting mean-field model
• Replace ψ with electron density (ρ)
• Key approximation: how quantum mechanical 

interactions are treated (exchange and correlation)

PV == Photovoltaic



0 K thermodynamics: convex hull
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Negative (or zero) 𝐸/0((: stable
• Lowest energy release via formation 

of AB



Lattice models and Monte Carlo
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As temperature rises

Entropic contributions
Mainly configurational

Generalized Ising
model (cluster 
expansion)

+
Grand-canonical Monte-
Carlo (Metropolis)

=
Configurational entropy 
contributions



Nudged elastic band (NEB)

16Sheppard et al., J. Chem. Phys. 2008, 128, 134106

NEB: can estimate 𝐸! for an ionic hop from one ”stable” site to 
another

Saddle-point finder by optimizing forces ”perpendicular” to the 
potential energy surface

NEB often used with DFT: approximations within DFT affect 
NEB estimates

Molecular dynamics (MD): can also be used to estimate 
diffusivity and/or migration barriers
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Diffusion in solids = 
series of ionic 
migrations or hops

Each migration event 
can be modelled via 
transition-state-theory



How do random ionic hops translate 
to macroscopic ionic transport?

17



How do random ionic hops translate 
to macroscopic ionic transport?
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cathode

Mg

Need “enough” number of “active” channels to percolate: “threshold” value  
Fraction of sites present in a percolating network: “extractable” content 



Lattice models and kinetic Monte Carlo
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Migration barriers in a “local” environment can be modelled 
using a local version of a cluster expansion

Such local cluster expansion can be used with kinetic 
Monte Carlo to estimate diffusivity, conductivity, etc.



Lattice models and kinetic Monte Carlo
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Event Proposal
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Randomly propose a 
event from events axis

Update occupation, 
barrier and probability 

Update location, 
displacement and hop 
counter

Calculate DJ, D*, HR and 
f etc.

Event Proposal



Machine learning

21

Machine learning: learn from 
predictions to make better predictions

Regressions: quickly predict a property via training 
on existing dataset of large sets of materials

Figure: Liow et al., 
Nano Energy 2022, 
98, 107214

Interatomic potentials: learn 
potential energy surface of a 
given material

Figure: Gao et al., 
Annu. Rev. Mater. 
Res. 2022, 52, 6.1

Feed forward 
neural 
networks

Crystal graph 
convolutional 
neural 
networks

LASSO, Ridge, 
Decision trees, 
etc.



In what ways do computations contribute?
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Design better electrodes and solid electrolytes

Identify novel materials for applications
• Use high-throughput screening +/- machine learning (ML) to generate key performance-

determining descriptors
• Collaborate with experimental groups for validation of theoretical predictions

Understand underlying materials phenomena better
• In-depth studies focused on thermodynamic, kinetic or electronic behavior of a given 

(candidate) material
• Predict ”stable” configurations, mobility bottlenecks, etc.

Make theory better
• Benchmark existing theoretical models against experimental data to identify best ones
• Develop better models for simulating complex phenomena



Examples of computations in action

Identify novel materials



Ternary Ca-compounds as Ca-cathodes
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Inorganic crystal structure database (ICSD1): has > 210,000 compounds
• Only 365 are ternary compounds containing Ca

• Compounds of composition CaiMjZk; M, Z = elements other than Ca
• Let M = TM (i.e., transition metal) and Z = O, S, Se, or Te: 181 compounds
• Charge-neutral charged compound (TMjZk) available for CaiTMjZk?

• CaMn2O4-Mn2O4 is ok, CaVO3-VO3 not ok
• 66 unique structures

• Either of CaiTMjZk or TMjZk thermodynamically (meta)stable?
• 𝐸"#$$ ≤ 30 meV/atom (based on Materials Project2)
• 10 unique compounds à evaluate (voltage and) mobility

1. https://icsd.products.fiz-karlsruhe.de/
2. https://materialsproject.org/

Final 
candidates!

CaV2O4
and 

CaNb2O4

Lu et al., Chem. Mater. 2021, 33, 5809

https://icsd.products.fiz-karlsruhe.de/
https://materialsproject.org/


Sodium superionic conductors (NaSICONs) as 
Ca-cathodes

25

High-throughput DFT calculations: 3 candidates

CaxV2(PO4)3, CaxMn2(SO4)3, and CaxFe2(SO4)3 D.B. Tekliye, G.Sai Gautam, et al., Chem. Mater. 2022, 34, 10133
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On-the-fly ML to predict ionic conductors

26
C. Wang et al., Chem. Mater. 2020, 32, 3741-3752

Candidates:
LiCl
Li2B7O12
Li3Sc2(PO4)3
Li2B6O9F2
Li2B3O4F3

Ionic conductors: 
important for all-solid-
state batteries



Examples of computations in action

Understand underlying materials phenomena



Quantify ionic mobility in solid electrolytes

2
8Z. Deng,  G. Sai Gautam, P. Canepa, and coworkers, Nat. Commun. 2022, 13, 4470

Sodium superionic 
conductor (NaSICON): 
known Na solid ionic 
conductor

Conductivity not known 
as a function of 
composition

Perform DFT+NEB at 
different compositions 
and subsequently use 
kinetic Monte Carlo 
simulations

Good agreement with 
experimental 
measurements



Quantify ionic mobility in solid electrolytes

2
9Z. Deng,  G. Sai Gautam, P. Canepa, and coworkers, Nat. Commun. 2022, 13, 4470

Get heat maps of Na-
ionic motion within the 
NaSICON as a 
function of 
composition!
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MgMn2O4: 
spinel prone 
to inversion

G. Sai Gautam et al., Chem. Mater. 2017, 29, 7918-7930

Use percolation to predict Mg transport in spinels



31G. Sai Gautam et al., Chem. Mater. 2017, 29, 7918-7930

5 different local 
environments to consider in 
an inverted spinel

Calculate migration barrier 
in each environment

Subsequently use 
percolation theory (Monte 
Carlo) to estimate 
percolation threshold and 
extractable capacity

Use percolation to predict Mg transport in spinels



32G. Sai Gautam et al., Chem. Mater. 2017, 29, 7918-7930

Use percolation to predict Mg transport in spinels

Macroscopic Mg transport possible 
as long as spinel is < 55% inverted



Use (ML) molecular dynamics to 
understand interfacial transport bottlenecks

33J. Wang, A.A. Panchal, G.Sai Gautam, and P. Canepa, J. Mater. Chem. A 2022, 10, 19732-19742

~8000 atoms; 10 ns

Li3P: conducive to Li-transport across interface

Model Li interface with possible argyrodite 
decomposition products to explain impedance build-up



Examples of computations in action

Make theory better



Reducing errors in functionals

35O. Long, G.Sai Gautam, and E.A. Carter, Phys. Rev. Mater. 2020, 4, 045401

Strongly constrained and appropriately normed (SCAN) functional: suffers from self-interaction 
errors in correlated systems (d or f open shells)
Use experimental oxidation enthalpies to obtain “optimal” Hubbard U corrections



Which functional predicts migration barriers well?
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Electrolytes

Electrodes

Migration barriers: crucial for power 
performance

Which exchange-correlation 
functional is best suited for migration 
barrier predictions in battery 
materials?

R. Devi, B. Singh, P. Canepa, and G.Sai Gautam, 
npj Comput. Mater. 2022, 8, 160

SCAN more accurate on average
• Describes right electronic 

structure
• Computationally expensive and 

difficult to converge
• Generalized gradient 

approximation (GGA): not bad 
either



Summary

38

https://sai-mat-group.github.io

saigautamg@iisc.ac.in

• Climate change requires rapid innovation and deployment of renewable technologies
• Bottleneck of renewables: underlying materials
• Understand materials behavior better + predict new materials for batteries and 

solar cells
• Use computations +/- machine learning to accelerate materials design

• Can we discover new materials for beyond Li-ion batteries?

• Can we understand existing materials phenomena better?

https://sai-mat-group.github.io/
mailto:saigautamg@iisc.ac.in

