

Intercalation phase diagram of Mg in V_2O_5 from first principles

Sai Gautam Gopalakrishnan, Pieremanuele Canepa, Aziz Abdellahi, Alexander Urban, Rahul Malik, Gerbrand Ceder

gautam91@mit.edu

G. Sai Gautam, P. Canepa, A. Abdellahi, A. Urban, R. Malik, G. Ceder "The Intercalation phase diagram of Mg in V_2O_5 from first principles" (submitted)

April 8, 2015

V₂O₅: Critical to cathode design of Mg-batteries

Why Mg?

- Next generation electrical devices benefit from high energy density storage systems
- Superior volumetric capacity for Mg metal anode (~3833 mAh/cm³) vs. Li metal anode (~2046 mAh/cm³)

V₂O₅: Critical to cathode design of Mg-batteries

Why Mg?

- Next generation electrical devices benefit from high energy density storage systems
- Superior volumetric capacity for Mg metal anode (~3833 mAh/cm³) vs. Li metal anode (~2046 mAh/cm³)
- New chemistry: Cathode design challenge
 - High voltage, high rates, high capacity

Why V_2O_5 ?

- One of only 3 cathodes to reversibly intercalate Mg
 - Others: Chevrel Mo₃S₄,^[1] Layered MoO₃^[2]
 - Higher voltage and lower volume change in V₂O₅
- Known Li intercalant

- 1. Aurbach *et al.*, Nature, 2000
- 2. Gershinsky et al., Langmuir, 2013

How does Mg intercalate into V_2O_5 ? Characterize the system through DFT

Ground State hull and Voltage curves • Benchmark with experiments

• Determine phase(s) of interest

Suggestions to improve performance

6

9

Experimental voltage profile matches α

Experimental voltage curve: Gershinsky *et al.*, Langmuir, 2013

Experimental voltage profile matches α

Experiments cycle Mg in α -V₂O₅

When Mg cycling is started in empty (charged) V_2O_5

- Experimental voltage profile matches better with α
- $\alpha \rightarrow \delta$ transformation requires structural rearrangement
- δ -V₂O₅, if accessed, could be metastable upon Mg cycling
 - δ -MgV₂O₅ has been experimentally synthesized³

3. Satto et al., J. Solid State Chem., 1998

Conclusions

Mg cycling in δ is better than α

- Mg cycling when begun in empty (charged) V_2O_5 stays in α
 - Voltage profile matches with experiments
- δ is better than α
 - Lower Mg migration barrier(s)
 - Higher Mg insertion voltage

Mg cycling when begun in full (discharged) V_2O_5 could stay in δ

G. Sai Gautam, P. Canepa, A. Abdellahi, A. Urban, R. Malik, G. Ceder "The Intercalation phase diagram of Mg in V₂O₅ from first principles" (submitted)

