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V-Os: Critical to cathode
design of Mg-batteries

 Why Mg (or Multi-valent)?

* Next generation of electric devices will benefit from higher energy density storage systems

* Superior volumetric capacity for Mg metal as anode (~3833 mAh/cms) vs. Li metal (~2046)
or Li in graphite (~800)

 New chemistry: Cathode challenge
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* Higher voltage than Chevrel I\/|0384m and lower volume change than layered I\/IoOS[Z]

* High Voltage, High Capac

* One of only 3 cathodes to reversibly intercalate Mg

* Known Li-intercalant ; Orthorhombic and Xerogel

5 1. Aurbach et al., Nature, 2000

2. Qershinsky et al., Langmuir, 2013



Orthorhombic V205

o and o



Polymorphs of orthorhnombic

Intercalant site

G. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742 4 G. Sai Gautam et al., Chem. Commun. 51, 2015, 13619-13622



Typical experimental voltage
profile for Mg insertion into V05
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Can we benchmark the experimental voltage curves with theoretical
predictions”
e Need to calculate the “ground state hull” for Mg insertion into V2Os (with DFT)

5 Image from Gershinsky et al., Langmuir 2013



Ground state hull and voltages

a- Vo0s should phase separate with 6-V>05
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Experimental voltage curve
matches a vo\tage profl\e
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Experiments cycle Mg in a-V20s

When Mg cycling is started in empty (charged) V20s, a is retained
* Experimental voltage curve benchmarks with predicted curve for a
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o — O transformation could be kinetically hindered
* Requires structural arrangement

What about Mg mobilities in o and &7

G. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742 8



Mg migration barriers

O IS better than o

Energy (meV)

Can Mg-cycling be done on 67
* May be, if begun in 6-MgV20s

G. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742
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O IS better for other MV systems also

Ca2+: & better mobility than o
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Summary: Orthorhombic V205

* Mg cycling when begun in empty (charged)-V20s5 stays in o

+ Voltage profile match with experiments

* OIS better than o

+ Better migration barriers for Mg=*, Ca®*

+ Better voltages for Mg+, Zn?*

Mg cycling could be done on 6

+ Since o =6 transformation is hindered

Impact of increased layer spacing and/or co-intercalation?
e Case of Mg in Xerogel-V20s5

G. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742 1 G. Sai Gautam et al., Chem. Commun. 51, 2015, 13619-13622



Xerogel V20s

Solvent co-intercalation



What is Xerogel-Vo0s5"
Does H20O “shuttle” with Mg

i 573 K
Hydratec version of YZOE’ Xerogel ——— Orthorhombic
Possesses a “bilayer” structure -H,0O

a V205 monolayers a The bilayer

Octahedral Mg2+

H20 + Ir 2L=2+Pry el-3loaEcing
<\
W% H-bonding
e C a¢ > 15 What is The role of H20 thermodynamically?




Methods detour: how do we calculate
grand-potential phase diagrams?

Grand-potential phase diagrams are used to study open systems

@ — GMgV205 T nHQO,LLHQO
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Grand-potential (D)
Governing thermodynamic potential
Minimize this to get stable phases

Gibbs energy (G)
Xerogel Mg-V20s with H20
Computed with DFT

Chemical potential of H20 (u)
External to the Xerogel (electrolyte)
Can be expressed in activities

HH,O = :uOHQO — RT'In AH,0

Number of moles of H20 (n)
In a given Xerogel structure

Computed with DFT (Vapor) Set manually based on wet, and
Corrected with experimental values 14 superdry conditions



Grand-potential phase diagram
Electrolyte-dependent H,O shutthng

Activity Voltage

A T TR B H20 content changes at low xuyg
54" 8 -0 <1 -0 H:0 dontent constant at high Xmg

No stable intermediate uMg (eV) H>O does not shuttle with Mg at

Mg compositions 15 nigh Xwmg
G. Sai Gautam et al., “Role of H2O in intercalation electrodes: the case of Mg in nano-crystalline Xerogel-V20Os”, Nano Lett. (accepted)




Voltage curves

—lectrolyte-dependent voltages could be important

Normally, V e (-Vmg)

When H>O co-intercalates
with Mg,

Voltage «(-Vjmg,-VuH,0)

— 0.25<x,, <05

Voltage in wet > dry

No water shuttling with Mg
H.O : .
G. Sai Gautam et al., “Role of H20 in intercalation electrodes: 2 NO Stable |ntermed|ate

the case of Mg in nano-crystalline Xerogel-V20s”, Nano Lett. 16 Mg com pOSitiOﬂS
(accepted)



Summary: Xerogel-V20s

e Solvent co-intercalation can impact an electrode’s
performance

* Sluggish mobility of Mg in oxide frameworks can be H20
partly overcome through water co-intercalation

* Electrostatic shielding by H,O molecules

« Water co-intercalation depends on electrolytic
conditions

* Full (wet) = Part (dry) = None (superdry)

* \oltages can become dependent on electrolytes,
leading to iImportant consequences 100

 Because of solvent co-intercalation V205

e Work can be extended to other solvent co-
iIntercalation systems

17
G. Sai Gautam et al., “Role of H20 in intercalation electrodes: the case of Mg in nano-crystalline Xerogel-V20s”, Nano Lett. (accepted)



Conclusions

« A potential way to improve the energy density of
modern secondary batteries is to use a MV chemistry

. Eeeivr\]/gczeel[ﬁios;rg éeee;(:ihto new challenges: the chief dCEgR ls: i: % :Eaj

(Orthorhombic V205 holds promise for MV systems, with & \
oredicted to have superior performance than a

.
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* Solvent co-intercalation can mitigate sluggish MV mobility, with
consequent impacts on the voltages and phase behavior as

ullustrated by the Mg-Xerogel V205 system j

fe. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742

G. Sai Gautam et al., Chem. Commun. 51, 2015, 13619-13622

G. Sai Gautam et al., “Role of H20 in intercalation electrodes: the case of Mg in nano crystalline Xerogel-V20s",
Nano Lett. (accepted)
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