

First-principles study of V₂O₅ polymorphs as Mg (and multi-valent) cathode materials

Sai Gautam Gopalakrishnan, Pieremanuele Canepa, Gerbrand Ceder

gautam91@mit.edu; gautam91@lbl.gov

February 21, 2016

V₂O₅: Critical to cathode design of Mg-batteries

• Why Mg (or Multi-valent)?

- Next generation of electric devices will benefit from higher energy density storage systems
- Superior volumetric capacity for Mg metal as anode (~3833 mAh/cm³) vs. Li metal (~2046) or Li in graphite (~800)

• Higher voltage than Chevrel $Mo_3S_4^{[1]}$ and lower volume change than layered $MoO_3^{[2]}$

2

• Known Li-intercalant ; Orthorhombic and Xerogel

- 1. Aurbach et al., Nature, 2000
- 2. Gershinsky et al., Langmuir, 2013

Orthorhombic V₂O₅

 α and δ

Polymorphs of orthorhombic V_2O_5 b a а

Intercalant site

Typical experimental voltage profile for Mg insertion into V₂O₅

Can we benchmark the experimental voltage curves with theoretical predictions?

• Need to calculate the "ground state hull" for Mg insertion into V_2O_5 (with DFT)

Experiments cycle Mg in α -V₂O₅

When Mg cycling is started in empty (charged) V_2O_5 , α is retained

• Experimental voltage curve benchmarks with predicted curve for α

- $\alpha \rightarrow \delta$ transformation could be kinetically hindered
- Requires structural arrangement

What about Mg mobilities in α and δ ?

G. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742

δ is better for other MV systems also

Zn²⁺: δ better voltage than α

Summary: Orthorhombic V₂O₅

- Mg cycling when begun in empty (charged)-V₂O₅ stays in α
 - Voltage profile match with experiments
- δ is better than α
 - ◆ Better migration barriers for Mg²⁺, Ca²⁺
 - ◆ Better voltages for Mg²⁺, Zn²⁺
- Mg cycling could be done on δ
 - Since $\alpha \rightarrow \delta$ transformation is hindered

Impact of increased layer spacing and/or co-intercalation?

Case of Mg in Xerogel-V₂O₅

G. Sai Gautam et al., Chem. Mater. 27, 2015, 3733-3742

Xerogel V₂O₅

Solvent co-intercalation

Methods detour: how do we calculate grand-potential phase diagrams?

Grand-potential phase diagrams are used to study open systems

G. Sai Gautam et al., "Role of H₂O in intercalation electrodes: the case of Mg in nano-crystalline Xerogel-V₂O₅", Nano Lett. (accepted)

Voltage curves Electrolyte-dependent voltages could be important Normally, V ∝(-∇µ_{Mg}) 2.9 0 5 0.5 $0 \le x_{Mg}^{} \le 0.25$ $0.25 \le x_{Mg}^{} \le 0.5$ When H₂O co-intercalates with Mg, 2.8 Voltage \propto (- $\nabla \mu_{Mg}$, - $\nabla \mu_{H_2O}$) 2.7 Voltage (V) 0 5 0.5 2.6 0.5 2.5 $0 \leftrightarrow 0$ $0.5 \leftrightarrow 0.5$ Voltage in wet > dryWet Superdry Dry 2.4 10⁻⁶ 10⁻⁷ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ **1**0⁻⁸ 10⁰ 10⁻¹ 10⁻⁹ No water shuttling with Mg $a_{\rm H_2O}$ No stable intermediate G. Sai Gautam *et al.*, "Role of H₂O in intercalation electrodes: the case of Mg in nano-crystalline Xerogel-V₂O₅", Nano Lett. Mg compositions 16 (accepted)

Summary: Xerogel-V₂O₅

- Solvent co-intercalation can impact an electrode's performance
- Sluggish mobility of Mg in oxide frameworks can be partly overcome through water co-intercalation
 - Electrostatic shielding by H₂O molecules
- Water co-intercalation depends on electrolytic conditions
 - Full (wet) \rightarrow Part (dry) \rightarrow None (superdry)
- Voltages can become dependent on electrolytes, leading to important consequences
 - Because of solvent co-intercalation
- Work can be extended to other solvent cointercalation systems

G. Sai Gautam et al., "Role of H₂O in intercalation electrodes: the case of Mg in nano-crystalline Xerogel-V₂O₅", Nano Lett. (accepted)

Conclusions

- A potential way to improve the energy density of modern secondary batteries is to use a MV chemistry
- New chemistry leads to new challenges: the chief being cathode search

- Orthorhombic V₂O₅ holds promise for MV systems, with δ predicted to have superior performance than α
- Solvent co-intercalation can mitigate sluggish MV mobility, with consequent impacts on the voltages and phase behavior as illustrated by the Mg-Xerogel V₂O₅ system

G. Sai Gautam *et al.*, **Chem. Mater. 27**, 2015, 3733-3742

G. Sai Gautam et al., Chem. Commun. 51, 2015, 13619-13622

G. Sai Gautam *et al.*, "Role of H₂O in intercalation electrodes: the case of Mg in nano crystalline Xerogel-V₂O₅", **Nano Lett.** (accepted)