First-principles study of V₂O₅ polymorphs as Mg (and multi-valent) cathode materials

^{1,2}Sai Gautam Gopalakrishnan, ²Pieremanuele Canepa, ^{2,3}Gerbrand Ceder

¹Massachusetts Institute of Technology; ²Lawrence Berkeley National Laboratory; ³University of California Berkeley

— Key Take-Away

- ✓ A potential way to improve energy density over Li-ion is to use MV-chemistry
- ✓ Finding cathode materials that can cycle MV-ions is a significant challenge

 Solvent (H₂O) co-intercalation can have a significant impact on the voltage and phase behavior of an electrode, while mitigating sluggish (Mg²⁺) mobility

Orthorhombic V_2O_5 holds promise since δ is predicted to be better than α

Relevant publications:

References:

D. Sheppard et al., J. Chem. Phys., 2008, 128, 134106
G. Gershinsky et al., Langmuir, 2013, 29, 10964-10972

Contact:

gautam91@mit.edu ; gautam91@lbl.gov

G. Sai Gautam, et al., "The Intercalation phase diagram of Mg in V₂O₅ from first principles", Chem. Mater., 2015, 27(10), 3733-3742
G. Sai Gautam, et al., "First-principles evaluation of multi-valent cation insertion into orthorhombic V₂O₅", Chem. Commun., 2015, 51, 13619-13622

3. G. Sai Gautam *et al.*, "Role of H₂O in intercalation electrodes: the case of Mg in nano-crystalline Xerogel V₂O₅", Nano Lett. (accepted)

