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Solar thermochemical (STC) production of H, and/or
CO: oxide perovskites are potential candidates
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1.Scheffe et al., Energy Fuels 2013, 27, 4250
2. Barcellos et al., Energy Environ. Sci. 2018, 11, 3256 5 MO,_s + H,0 — 5 MO, + H,
3. Emery and Wolverton, Scientific Data 2017, 4, 170153 .. .
4. Deml et al., Chem. Mater. 2014, 26, 6595 Similar cycle for CO, splitting

Oxide perovskites have been explored as new candidates’

« Large composition space = tunability of enthalpy of reduction (AH,..;) within “optimal” range
« Non redox-active “A” cation (in ABOj) = loss in entropy of reduction (AS,..;) = lower capacity

. . . . . Siegel et al., Ind. Eng. Chem. Res. 2013, 52, 3276
Can we identify perovskites with higher AS,..;? Carillo and Scheffe, Sol. Energy 2017, 156, 3 5



Higher entropy of reduction = higher yield

Entropy of reduction for an induced off-stoichiometry, §, in ABO3
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Higher entropy of reduction = higher yield

Entropy of reduction for an induced off-stoichiometry, &, in ABO3
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Assuming a simple regular solution model,
simultaneous A+B reduction can yield ~0.014 4k
(mol of O)/(mol atom ABQO3), higher than B-
reduction (~0.009) or CeO, (~0.013)
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« Oxygen evolution capacity AN O,(gas, 1673K, 10Pa)
« A+B reduction 60% > A or B reduction = 3=' NS oo ]
* A+B reduction 9% > CeO,

can yield better capacities
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Potential simultaneously redox active ABO; perovskites?

Required sizes of A and B, charge neutrality, redox-activity constraints = Cag sCeqsMO3
e M=Sc, Ti,V, Cr, Mn, Fe, Co, and Ni




No experimental Ca, ;Ce, MO, structures
available: use CaMO,; or CeMO,
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Identify lowest energy Ca-
Ce configuration

Density functional theory engine: strongly constrained and appropriately normed (SCAN) functional,
corrected with optimal Hubbard U correction’

AH,.; = Ep[Vag] (oxygen vacancy formation energy) 5
1. G.S. Gautam and E.A. Carter, Phys. Rev. Mater. 2018, 2, 095401; O.Y. Long et al., Phys. Rev. Mater. 2020, 4, 054101 2. E.B. Stechel et al., in preparation



Oxygen vacancy formation energy in Ca, :Ce, :MO,:
Cay5Cen sMnO; and Ca, sCe, sFeO4 are promising
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0 K stability of Ca, :Cey :MO;

Impact of configurational entropy (of mixing)
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E.g., ABOz > AO,+BO

| l Possible dopants -

Structural stability (and AH,..;) might be tunable_-

_Sc
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Ca;.,Ce,MnO; (x~0.2) has been synthesized before’

l E.g., AO,+BO-> ABO;

Energy gain by
formation from
“adjacent” stable
compounds

Ca, sCe, sMO;, perovskites: can be stabilized at higher temperatures via A-site configurational entropy
1. Zeng et al., Phys. Rev. B 2001, 63, 224410



Simultaneous Ce+Mn reduction in Ca, ;Ce, sMnO4

Ep[Vao] = 3.65-3.96 eV (< CeO,, 4-4.3 eV")

Bulk Defective (inset)
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On-site magnetic moments: Ce**, Mn3* in bulk
Mn3+ displays Jahn-Teller distortion
Ce fbeyond Fermi; small amount of Mn d states

On-site magnetic moments: Ce**/3+, Mn3+?2+
States: Ce freduction clear, sliver of Mn d

1. Zinkevich et al., Solid State lonics 2006, 777, 989



Simultaneous Ce+Mn reduction in Ca, ;Ce, sMnO4

Ep[Vag] = 3.65-3.96 eV (< Ce0O,, 4-4.3 eV')

@50

Electron | Reduced Ce
accumulation
Reduced Mn
Caz* Reduced Mn
doesn’t exhibit
Mn3+ Jahn-Teller
02 distortion

Electron density difference plot: CagsCeqsMnO5 with and without oxygen vacancy

1. Zinkevich et al., Solid State lonics 2006, 177, 989 Simultaneous reduction = candidate! 9



Conclusions and Acknowledgments

* Need better materials for STC H,O/CO, splitting
» Oxide perovskites: tunable AH, .4, low AS,..4

» Size + charge-neutrality + redox-activity constraints = Cag5CeqsMO3 (M = Sc, Ti,...,Ni)

» Cay5CepsMnO; and Ca, 5sCe, sFeO4 exhibit near-optimal AH,..;(= Eg[Vag])
* Most quaternaries are not stable at 0 K, but A-site configurational entropy can help

» Density of states calculations + On-site magnetic moments + (Lack of) Jahn-Teller distortion + Electron
density different plots = Evidence for simultaneous Ce and Mn reduction in Ca, ;Ce, sMnO4
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