

Sai Gautam Gopalakrishnan, Ellen B. Stechel, Emily A. Carter

Indian Institute of Science & Princeton University

saigautamg@iisc.ac.in; https://sai-mat-group.github.io

Pratidhwani, Indian Institute of Technology Delhi Nov 12, 2020

Scientific journey so far...

Solar thermochemical (STC) production of H₂ and/or CO

Candidates so far:

- CeO₂
- Fe(Fe,X)₂O₄
- $(A,A')BO_3$

Needs "good" materials!

- Durability (withstand high TR and low WS temperatures)
- Capacity (tolerate high degrees of oxygen off-stoichiometry)
- Stability (no undesired phase transformations)

New candidates?

Solar thermochemical (STC) production of H₂ and/or CO

Candidates so far:

- CeO₂
- Fe(Fe,X)₂O₄
- (A,A')BO₃

German research center (DLR), 2017

State-of-the-art: Pure and doped fluorite-CeO₂

Needs "good" materials!

- Durability (withstand high TR and low WS temperatures)
- Capacity (tolerate high degrees of oxygen off-stoichiometry)
- Stability (no undesired phase transformations)

New candidates?

Siegel *et al.*, **Ind. Eng. Chem. Res. 2013**, *52*, 3276 Carillo and Scheffe, **Sol. Energy 2017**, *156*, 3

Image: https://www.solarpaces.org/csp-efficient-solar-split-h2o-hydrogen/

Enthalpy of reduction = spontaneity

$$\frac{1}{\delta}MO_x \to \frac{1}{\delta}MO_{x-\delta} + \left(\frac{1}{2}\right)O_2(g) \quad \text{Reducing conditions}$$

Enthalpy of reduction for the induced off-stoichiometry, δ

$$\Delta H_{reduction} = \frac{H_{MO_{x-\delta}} - H_{MO_x}}{\delta} + \left(\frac{1}{2}\right) H_{O_2}(g)$$

If $\delta \to 0$, then

$$\Delta H_{reduction} = -\frac{dH_{MO_x}}{dx}\Big|_x + \left(\frac{1}{2}\right)H_{O_2}(g) \equiv \Delta H_{formation}^{Va_0} \qquad \text{Oxy}$$
form (Ca

Oxygen vacancy formation energy (Calculable)

Low $\Delta H_{reduction} = \text{large } \delta$ But induced δ needs to be recovered during water-splitting (re-oxidation) \rightarrow optimal $\Delta H_{reduction}$

Thermodynamic models¹ point to optimal $\Delta H_{reduction}$ or $\Delta H_{formation}^{Va_0} \sim 3.4-3.9 \text{ eV}$ (CeO₂ is ~4 eV) Theoretical screening purposes: 3.2-4.1 eV (±0.2 eV error)

 Article
 Matche fill
 Matche fill

1. Stechel, Ermanoski, and Miller, in preparation

5

Enthalpy of reduction = spontaneity

$$\frac{1}{\delta}MO_x \to \frac{1}{\delta}MO_{x-\delta} + \left(\frac{1}{2}\right)O_2(g) \quad \text{Reducing conditions}$$

Enthalpy of reduction for the induced off-stoichiometry, δ

$$\Delta H_{reduction} = \frac{H_{MO_{x-\delta}} - H_{MO_x}}{\delta} + \left(\frac{1}{2}\right) H_{O_2}(g)$$

Several studies have theoretically screened, high-throughput calculations and/or machine learning, for novel ABO₃ perovskites, based on a $\Delta H_{formation}^{Va_0}$ range

- Candidates either exhibit rare elements (e.g., Eu, Ho) or don't exceed CeO₂'s performance in experiments (stability or kinetic limitations or theory error)
- Entropic handles? Beyond ternary ABO₃ candidates?

pubs.acs.org/cm

Thermodynamic models¹ point to optimal $\Delta H_{reduction}$ or $\Delta H_{formation}^{Va_0} \sim 3.4-3.9 \text{ eV}$ (CeO₂ is ~4 eV) Theoretical screening purposes: 3.2-4.1 eV (±0.2 eV error)

CM CHEMISTRY OF MATERIALS

High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications

Antoine A. Emery, James E. Saal, † Scott Kirklin, Vinay I. Hegde, and Chris Wolverton*

1. Stechel, Ermanoski, and Miller, in preparation

PHYSICAL CHEMISTRY

Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides

Ann M. Deml,^{†,‡} Aaron M. Holder,^{§,∥} Ryan P. O'Hayre,[†] Charles B. Musgrave,[§] and Vladan Stevanović^{®,†,‡} PHYSICAL REVIEW MATERIALS 2, 043802 (2018)

Predictions of new ABO₃ perovskite compounds by combining machine learning and density functional theory

Prasanna V. Balachandran,^{1,*} Antoine A. Emery,² James E. Gubernatis,¹ Turab Lookman,^{1,†} Chris Wolverton,² and Alex Zunger³

Higher entropy of reduction = higher productivity

Entropy of reduction for an induced off-stoichiometry, δ , in ABO₃

Ce sub-lattice + O sub-lattice configurational S

B sub-lattice + O sub-lattice

Higher entropy of reduction = higher productivity

Entropy of reduction for an induced off-stoichiometry, δ , in ABO₃

The lack of redox-activity of A in ABO₃ reduces configurational entropy (per O) in ABO₃ vs. CeO₂

- If A is redox-active in addition to B: ABO₃'s configurational entropy can increase beyond CeO₂
- Will productivity gains be worth it? How to quantify?

Simultaneous redox-activity = higher productivity

Entropy of reduction for an induced off-stoichiometry, δ , in ABO₃

Simultaneous redox-activity = higher productivity

Entropy of reduction for an induced off-stoichiometry, δ , in ABO₃

Simultaneous redox-activity = higher productivity

Entropy of reduction for an induced off-stoichiometry, δ , in ABO₃

Structural constraints: ABO₃ can allow (A,B) to be redox-active simultaneously, but...

Difficult to describe redox + not common in oxide perovskite

Not as many options for cations on A site that can be redox active (and reasonably abundant) • Ce (+4/+3)

Ca most compatible with Ce on A (1.12Å ionic radius vs. 0.97-1.14Å)

e.g., LaFeO₃

- ABO₃: Perovskite
 - Large A and 3d B; need large redox active A (e.g., Ce)
 - Possible (A,B): (+1,+5), (+2,+4), (+3,+3), (+4, +2), (+5,+1)

Structural constraints: ABO₃ can allow (A,B) to be redox-active simultaneously, but...

Difficult to describe redox + not common in oxide perovskite

Not as many options for cations on A site that can be redox active (and reasonably abundant) • Ce (+4/+3)

Ca most compatible with Ce on A (1.12Å ionic radius vs. 0.97-1.14Å)

Explore Ca-Ce-M-O perovskites (M = 3d except Cu, Zn) for potential simultaneous redox activity

- Specifically, look at Ca_{0.5}Ce_{0.5}MO₃ using theoretical calculations
- Still need to have ideal ΔH !
- And be thermodynamically stable

Methods detour: calculation setup, structural input and stability

Density functional theory (DFT): predict material properties

DFT toolkit choice: Vienna ab initio simulation package (https://www.vasp.at/)

Hohenberg and Kohn, Phys. Rev. 1964, *136*, B864
 Kohn and Sham, Phys. Rev. 1965, *140*, A1133

Total energy at 0 K \approx Gibbs energy \rightarrow Thermodynamics

Density of states + Band structure \rightarrow Band gap

Energy to displace atoms \rightarrow Phonon/vibrational

Barriers for atomic migration \rightarrow Kinetics

Energy of defective structures \rightarrow Defect thermodynamics

Density functional theory^{1,2}: approximate electronic interactions into a non-interacting mean-field
Approximation: exchange-correlation (XC) functional

XC functionals: Jacob's ladder of increasing accuracy

 Choice: strongly constrained appropriately normed (SCAN)³

Need structural input!

3. Sun et al., **Phys. Rev. Lett. 2015**, *115*, 036402 Figure (above): Car, **Nat. Chem. 2016**, *8*, 820

No experimental $Ca_{0.5}Ce_{0.5}MO_3$ structures available: use $CaMO_3$ or $CeMO_3$

16

Templating scheme for theoretical (Co & Ni) structures

17

0 K thermodynamics: convex hull

E^{hull}: measure of stability of given structure+composition combination (at 0 K)

XC functional: a U correction to SCAN

Convex hull at 0 K: SCAN+U including all binary, ternary, and quaternary ICSD structures $\Delta H_{reduction} \approx E_{F}[Va_{0}]$

G.S. Gautam and E.A. Carter, Phys. Rev. Mater. 2018, 2, 095401; O.Y. Long, G.S. Gautam, and E.A. Carter, Phys. Rev. Mater. 2020, 4, 045401

THE SECOND LAW OF THERMODWAMICS STATES THAT A ROBOT MUST NOT INCREASE ENTROPY, UNLESS THIS CONFLICTS WITH THE FIRST LAW.

Results

Ternaries

- Structures
- Vacancy formation
- Stability

Quaternaries

- Vacancy formation
- Stability

Structures and oxidation states: CaMO₃ and CeMO₃

Ca-ternaries	Са	Μ	Ce-ternaries	Се	Μ
CaScO ₃	-	-	CeScO ₃ (Orthorhombic)	+3	+3
CaTiO₃ (Orthorhombic)	+2	+4	CeTiO ₃	-	-
CaVO₃ (Orthorhombic)			CeVO ₃ (Monoclinic)	+3	+3
CaCrO ₃ (Orthorhombic)			CeCrO ₃ (Cubic)		
CaMnO ₃ (Orthorhombic)			CeMnO ₃		
CaFeO ₃			CeFeO ₃		
CaCoO₃ (Theoretical, Monoclinic)			CeCoO ₃ (Theoretical, Orthorhombic)	+4	+2
CaNiO ₃ (Theoretical, Hexagonal)			CeNiO ₃ (Theoretical, Monoclinic)		

Based on on-site magnetic moments and/or density of states

Structures and oxidation states: CaMO₃ and CeMO₃

Based on on-site magnetic moments and/or density of states

Oxygen vacancy formation in CaMO₃ and CeMO₃: no obvious candidate

0 K stability: CaMO₃ and CeMO₃

ICSD structures: either negative $E^{\rm hull}$ or small positive $E^{\rm hull}$ Theoretical structures: large positive $E^{\rm hull}$

Weak correlation between negative $E^{\rm hull}$ and large vacancy formation energy

 $CeCoO_3$ is highly unstable!

0 K stability: CaMO₃ and CeMO₃

No candidates among ternaries in terms of simultaneous redox and optimal enthalpy of reduction: what about quaternaries?

Oxygen vacancy formation energy in $Ca_{0.5}Ce_{0.5}MO_3$: $Ca_{0.5}Ce_{0.5}MnO_3$ and $Ca_{0.5}Ce_{0.5}FeO_3$ are promising

Oxygen vacancy formation energy in $Ca_{0.5}Ce_{0.5}MO_3$: $Ca_{0.5}Ce_{0.5}MnO_3$ and $Ca_{0.5}Ce_{0.5}FeO_3$ are promising

0 K stability of $Ca_{0.5}Ce_{0.5}MO_3$ Impact of configurational entropy (of not reduction)

Ca_{0.5}Ce_{0.5}MO₃ perovskites: can be stabilized at higher temperatures via A-site configurational entropy 1. Zeng *et al.*, **Phys. Rev. B 2001**, *63*, 224410

Summary and outlook

- · Need better materials for solar thermochemical water splitting
 - Durability, Capacity and Stability
- · Search for perovskites with higher entropy of reduction for higher productivity
 - Simultaneous cation redox: Ca_{0.5}Ce_{0.5}MnO₃ is a promising candidate
 - Candidates based on optimal enthalpy of reduction: Ca_{0.5}Ce_{0.5}MnO₃, Ca_{0.5}Ce_{0.5}FeO₃, Ca_{0.5}Ce_{0.5}VO₃ (may be), and CeCoO₃ (unstable)
- · Standard reduction potentials --a strong descriptor of vacancy formation energies
 - Particularly in ternaries, structural factors also dominate
 - Increasing Ca (Ce) concentration introduces weaker (stronger) Ca-O (Ce-O) bonds: decreases (increases) vacancy formation energy
- To do
 - Decouple factors contributing to vacancy formation, find other candidates
 - Quantify productivity and efficiency gains in Ca_{0.5}Ce_{0.5}MnO₃ (theory and experiments)
 - 1. <u>G.S. Gautam</u>, E.B. Stechel, and E.A. Carter, "Exploring Ca-Ce-M-O (M = 3*d* transition metal) oxide perovskites for solar thermochemical applications", **Chem. Mater. 2020**, *in press*
 - 2. <u>G.S. Gautam</u>, E.B. Stechel, and E.A. Carter, "A first-principles-based sub-lattice formalism for predicting off-stoichiometry in materials for solar thermochemical applications: the example of ceria", **Adv. Theory Simul**. **2020**, 3, 2000112
 - 3. <u>G.S. Gautam</u> and E.A. Carter, "Evaluating transition metal oxides within DFT-SCAN and SCAN+*U* frameworks for solar thermochemical applications", **Phys. Rev. Mater. 2018**, *2*, 095401
 - 4. O.Y. Long, <u>G.S. Gautam</u>, and E.A. Carter, "Evaluating optimal *U* for 3*d* transition-metal oxides within the SCAN+*U* framework", **Phys. Rev. Mater. 2020**, *4*, 045401

Acknowledgments

Carter group, Summer 2019

Prof. Emily A. Carter UCLA and Princeton

Dr. Ellen Stechel (Arizona State)

भारतीय विज्ञान संस्थान

Organizers of Pratidhwani IIT-Delhi The (virtual) audience

Computing resources at NREL (Eagle) and Princeton (Tiger)

PRINCETON UNIVERSITY saigautamg@iisc.ac.in

https://sai-mat-group.github.io https://materials.iisc.ac.in/