OH, HEY, YOU ORGANIZED
OUR PHOTO ARCHIVE!

YEAH, T TRAINED A NEURAL
NET TO SORT THE UNLABELED

PHOTOS INTO CATEGORIES N AM M
uHQA' NICE WORK!

% Bangalore, India

ENGINEERING TiP:
WHEN YOU DO A TASK BY HAND
YOU CAN TECHNICALLY SAY YOU
TRANED A NEURAL NET To DO IT.

Applications of machine learning to
materials science
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Why bother about materials science?

Key performance bottlenecks in key applications: governed by materials used

© =

Energy and power density of a battery: limited by materials used as
electrodes (and at times, electrolytes)

Key material properties: stability, ionic mobility, reaction energies

O BBD@  curen t
g_/ ] - 6”‘ collector
Graphene Li*  Solvent LMO Iaye
structure molecule

B. Dunn et al., Science 2011

Usage of better materials - better performance

Inside a photovoltaic cell

energy
from light

transparent
negative
terminal

glass
n-type layer
(semiconductor)

positive
terminal

junction

p-type layer

Efficiency of a photovoltaic: choice of semiconductor used as the

freed electrons

Source: U.S. Energy Information

holes filled by freed electrons

Administration

(semiconductor)
i light absorber
T
Fecd _ Key material properties: band gap, stability, resistance to point
—lin ¢ (. .(. .( ,’ - wn Jefects
C c l + (current)



Why use machine learning (ML) In
materials science?

Technological innovation and deployment is a ‘slow’ process: often limited by materials

Cars (US) [ [ | Historical Future

Cathode Ray Tube TV (US) [ | |

Nuclear power (France) | [ |

Combined cycle gas turbines (UK) [ | [ ]

Solar photovoltaics (Germany) | |

Videocassette Recorder (UK) |:|:]
Wind electricity (Denmark) [ [ |
Cash cards & ATMs (UK) [::|

Mobile phone (US) | [ |

Compact fluorescent light bulbs (UK) [ ] |

Lithium ion rechargeable batteries (Global) ‘:l:|
Thin Film Transistor LCD TV (Global) 1T 1
LED lighting (UK) T ]
1880 1900 1920 1940 1960 1980 2000 2020 2040
O Invention, development and demonstration @ EU restriction on natural gas generation

) Market deployment and commercialisation

Gross et al., Energy Policy 123, 682-699 (2018)



Why use machine learning (ML) In

materials science?

Technological innovation and deployment is a ‘slow’ process: often limited by materials

Cars (US) | [

Historical Future

Cathode Ray Tube TV (US) [ |

Videocassette Recorder (UK)

Novel products for new
use and consumer
products

Cash cards & ATMs (UK)

Mobile phone (US)

Compact fluorescent light bulbs (UK)

Lithium ion rechargeable batteries (Global)

Thin Film Transistor LCD TV (Global)

end use and consumer
products

LED lighting (UK)

Replacement products- energy| markets - energy end

Nuclear power (France) [

Combined cycle gas turbines (UK) [

Solar photovoltaics (Germany)

Electricity generation
technologies

Wind electricity (Denmark)

1880 1900 1920 1940

0 Invention, development and demonstration
0 Market deployment and commercialisation

1960 1980 2000 2020 2040

(@ EU restriction on natural gas generation

Gross et al., Energy Policy 123, 682-699 (2018)

Innovation is
particularly
slow in
energy
generation
sector!



Why use machine learning (ML) Iin
materials science?

Technological innovation and deployment is a ‘slow’ process: often limited by materials

- Cars (US) | | [ | Historical | Future
t = o

s 3E |

oo 2 2 Cathode Ray Tube TV (US) : [ | |

583 |

T ; g

g 2 <& Videocassette Recorder (UK) j 11

3% Y |

S E” Cash cards & ATMs (UK) | T ]

Faster ways of discovering new/better materials - faster innovation cycles

Machine learning = “model” materials/“predict” properties faster

s LED lighting (UK) | C T ]
[~4
S Nuclear power (France) : | | | |nn0va’[i0n iS
E gs Combined cycle gas turbines (UK) ‘ | 770 partIC.u Iarly
S 2 | slow in
%" -FC, Solar photovoltaics (Germany) [ | | energy
2 8 ‘ :
% Wind electricity (Denmark) | | | genel‘atlon
| sector!

1880 1900 1920 1940 1960 1980 2000 2020 2040

0 Invention, development and demonstration [ EU restriction on natural gas generation
0 Market deployment and commercialisation

Gross et al., Energy Policy 123, 682-699 (2018) 6



aterials Genome (2011-present
THE U.S. MATERIALS GENOME INITIATIVE

“...to discover, develop, and deploy new materials twice as fast, we’re launching what we call the Materials Genome Initiative”
= President Obama, 2011

OMeeﬁng Societal Needs o Accelerati ng Our Pace The U.S. Materials Genome Initiative (MGI)
Advanced materials are at the heart challenges researchers, policymakers, and
of innovation, economic opportunities, business leaders to reduce the time and
and global competitiveness. They are resources needed to bring new materials
the foundation for new capabilities, to market—a process that today can take
tools, and technologies that meet 20 years or more.
urgent societal needs including clean
energy, human welfare, and national
security.

\
g~}

Time to Market
\

'

—O Clean Energy ——O Human Welfare

~

——————0 National Security Before MGI O After MGI

Discovery Development Deployment

The MGI is a multi-agency initiative to
renew investments in infrastructure
designed for performance, and to
foster a more open, collaborative
approach to developing advanced
materials, helping U.S. Institutions

accelerate their time-to-market. ‘b“‘“ m

O Computational tools ——————O Experimental tools ——————(O Collaborative networks ——————( Digital data

"l .'h.'." a 4' 1o e

oBuilding Infrastructure for Success} o 3

a - | .l - | R - n . - .
-u'.-."'i.l.'i-..'.".'..ll'l. e i Amt .li. n '|-'l .



Evolution of ‘modelling’ in materials

science

On the determination of molecular fields.
—II. From the equation of state of a gas

J. E. Jones

1924

Published: 01 October 1924 https://doi.org/10.1098/rspa.1924.0082

Inhomogeneous Electron Gas

P. Hohenberg and W. Kohn
Phys. Rev. 136, B864 — Published 9 November 1964

1964

Computer simulation of local order in condensed phases of silicon

Frank H. Stillinger and Thomas A. Weber
Phys. Rev. B 31, 5262 — Published 15 April 1985; Erratum Phys. Rev. B 33, 1451 (1986)

1986

From ultrasoft pseudopotentials to the projector augmented-wave
method

G. Kresse and D. Joubert
Phys. Rev. B 59, 1758 — Published 15 January 1999

1999

Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces

Jorg Behler and Michele Parrinello
Phys. Rev. Lett. 98, 146401 — Published 2 April 2007

2007

THE U.S. MATERIALS GENOME INITIATIVE 2011-
- Gégy 2018

1957

1975

1996

2003

2018-

present

RESEARCH ARTICLE | AUGUST 13 2004
Phase Transition for a Hard Sphere System
Special Collection: JCP 90 for 90 Anniversary Collection

B. J. Alder; T. E. Wainwright
'.) Check for updates

J. Chem. Phys. 27, 1208-1209 (1957)

https://doi.org/10.1063/1.1743957  Article history &

Clustering and ordering in solid solutions

D. de Fontaine

Generalized Gradient Approximation Made Simple

John P. Perdew, Kieron Burke, and Matthias Ernzerhof
Phys. Rev. Lett. 77, 3865 — Published 28 October 1996; Erratum

Shock Waves in High-Energy Materials: The Initial Chemical Events
in Nitramine RDX

Alejandro Strachan, Adri C. T. van Duin, Debashis Chakraborty, Siddharth Dasgupta, and William A. Goddard, Il
Phys. Rev. Lett. 91, 098301 — Published 28 August 2003

Predicting Crystal Structures with Data Mining of Quantum
Calculations

Stefano Curtarolo, Dane Morgan, Kristin Persson, John Rodgers, and Gerbrand Ceder
Phys. Rev. Lett. 91, 135503 — Published 24 September 2003

Data DeePMD-kit T
Generator Data Train/Test S~
DFT, AIMD, QMC, ... e &

g 4|

1 2 [
DeePMD-kit descriptors | B
MD support 1 g
[Tt DeePMD | 5
MD Interface TR = o I

o

3

2

3

| | Model

| | :
Predictions

TensorFlow lib

standard Tensor OP
& Compt. Graph

DeePMD-kit lib

descript OP, force OP,
& virial OP

d @}E@O 8

Pooling L, hidden



Types of ML in materials science

Regressions: make property

predictions better with

‘simple’ inputs

(also classifications)
KNeighborsRegressor, r2: 0.7503

===z [deal &
—— linear fit : o2
2.
_c o) \,I\‘
7]
et
L (@]
o
Q1F,
&g
/'1?}’
i
0 1 2
Actual
\v;

— ]

™ \ a

Coarse graining: create
‘simple’ models to mimic

properties of larger lattice(s)

e

T T

Interatomic potentials:
describe potential energy
surface accurately

Total energy

®{Q0ther atoms
A

l

Potential |<— (Parameters )

Atomic
positions
[ J




Types of ML in materials science

Regressions: make property
predictions better with
‘simple’ inputs

(also classifications)

Predicted

KNeighborsRegressor, r2: 0.7503

Coarse graining: create
‘simple’ models to mimic

properties of larger lattice(s)

---- ideal Py
—— linear fit

o

OQa®

e e m .. -.----
----ﬁ----l
]

]

]

]

]
-l

TR IR

Interatomic potentials:
describe potential energy
surface accurately

Total energy

S
Other atoms
5T

l

Potential | «— | Parameters

Atomic
positions
[ J

This is not the complete classification: language models, transfer- or reinforcement-
learned models, artificial intelligence (Al) models, etc.




Where does the data come from?

Home

Home B

Leaderboard-Property: General Purpose Algorithms on matbench ve.1

Find more information about this benchmark on

Task name Samples Algorithm Verified MAE (unit) or ROCAUC Notes

312 87.7627 (MPa)

636 33.1918 (meV/atom)

1,265 28.7606 (cm*-1) structure required
4,604 0.3327 (eV)

4764 0.2711 (unitless)

4,921 0.9209

DEAD&ALIVE —— i 09603

10,987 0.0670 (log10(GPa)) structure required

SCHRODINGER'S CAT v oo

18,928 0.0269 (eV/unit cell) structure required

106,113 0.1559 (eV) structure required

106,113 0.9520 structure required

<
»N

\
\

132,752 0.0170 (eV/atom) structure required
\
/ ]

Data organization: python/API : : l ot
Vo' g
ML: python < o ler
I CS D National Institute of H-‘-Em”

Standards and Technology



https://matbench.materialsproject.org/

Overview

KNeighborsRegressor, r2: 0.7503

---- ideal
linear fit

°
Q
o+
L
°
o
j -
o

Regression models:
examples and utility

Reshma Devi

L}
L}
L}
L}
L}
L}
U
LY
L}
L}
L}
L}
L}
L}
1}

s s s s

E R

Coarse graining models:
the example of cluster
expansion

Dereje Bekele Tekliye

1

Total energy

S
Other atoms
A

l

Potential | «—  Parameters

Atomic
positions

Machine learned
interatomic potentials:
construction and usage

Agshat Seth



Regression models: things to note

= 2

Online Materials Other ‘ Data
\databases datasheets  sources y ‘ validation
-
Matorale Data input / Data-driven
eaton processing / » research & feature
g integration engineering

Local database

ID | Features | E | v | ...
GE 1| 3 e |w]..
2 {F;} Ey|va ...

Wang et al., Chem. Mater., 32, 4954- 4965 (2020)

Important considerations

OO (Open-source
V00— [contribution) i
- How large is your data?
Machine .
E = Knowledge How and with what ease can
n
i your model be used by the
research community?
=R § Model interpretability vs.

predictive power trade off
(e.g., complex neural networks
vs. simple regression models)

Screen materials from a database for a given

application or property

Objectives of a ML model

Process data to gain new insights

Conceptualize new modelling approaches



What model to choose?

Simpler models are interpretable but less accurate, typically

« “Smaller” data sets - simpler models  + “Larger” data sets - complex models

o Ridge/Lasso regression o Neural networks (NNs)

o K-nearest neighbours o Graph neural networks (GNN)

o Random forest o Crystal graph convolutional neural network (CGCNN)
o Support vector machines o Atomistic line graph neural network (ALIGNN)

KNeighborsRegressor, r2: 0.7503

Hidden layer 1 Hidden layer 2 Hidden layer 3

--—- ideal Input layer

i\

AN \S \%

Aa

S

— linear fit > ‘
2- 7 ‘§\vv7/;' \\\vv’;ﬁ"
N\ aW2 7 N7
) N N
00 QN e N e
A N2
X RS H\\-}{ 54 R
A s X)
T AN
() YA X
— 2 2
O |o : N
- — -‘g, %
© XA
(O N K 4
g g e
g /'r Y é/;//’h;‘é\:\\&‘ Z, ’I)}.‘ :\\k\\
a SN\ TSN NS
S RN > '\\“\\\ V> '\\“-\\\ /
> VAV \\ P AV \\
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What model to choose?

Simpler models are interpretable but less accurate, typically

« “Smaller” data sets - simpler models  + “Larger” data sets - complex models

o Ridge/Lasso regression o Neural networks (NNs)

o K-nearest neighbours o Graph neural networks (GNN)

o Random forest o Crystal graph convolutional neural network (CGCNN)
o Support vector machines o Atomistic line graph neural network (ALIGNN)

KNeighborsRegressor, r2: 0.7503

Hidden layer 1 Hidden layer 2  Hidden layer 3

Input layer

--=-- jdeal
— linear fit

Predicted

Y
2

2 \
"" ARy 137 W =
FZX SN M\

SNV Y/ e\ \ Y

« "Black Box"

» Does not provide chemical/physical
insights

« High accuracy

Human interpretable

Provides chemical and physical
insights
Low accuracy



How to quantlfy model accuracy?

Dependent variable

True positive rate

6-

Residual

Perfect
classifier
10e

3

4 5

Independent variable

ROC curve

Higher accuracy - smaller squared sum of residuals
(SSR)

Regression models (continuous target)
¢ 12

« Mean absolute error (MAE)

* Root mean square error (RMSE)

Classification models (binary target)

« Accuracy: fraction of correct predictions

» Precision: fraction of correct ‘positives’ among all
positives

» Recall: actual fraction of correct ‘positives’

» Receiver operator characteristic (ROC) curve

How do we know our model isn’t overfit on data?

Need to test our model on ‘unseen’ data
» Kk-fold cross-validation (CV) score (simple models)
Error on test dataset (complex models)

16



How to quantlfy model accuracy?

6-

Dependent variable

1.00 1

0.95 A

r2

0.90 A

0.85 1

0.80 A

0.75

Model complexity

Higher accuracy - smaller squared sum of residuals
(SSR)

Regression models (continuous target)
¢ 12

« Mean absolute error (MAE)

* Root mean square error (RMSE)

Classification models (binary target)

« Accuracy: fraction of correct predictions

» Precision: fraction of correct ‘positives’ among all
positives

» Recall: actual fraction of correct ‘positives’

» Receiver operator characteristic (ROC) curve

How do we know our model isn’t overfit on data?

Need to test our model on ‘unseen’ data
» Kk-fold cross-validation (CV) score (simple models)
« Error on test dataset (complex models)

Significant deviation between training and test errors=> overfit model

17



Linear and non-linear models

Relationship of target data can be linear/non-linear with underlying independent variables (descriptors)

A o

o
> O
o o ® o
o
S o0
Q
= O
o o
© o .
— Linear data
O

Independent variable(s)

Linear regression/linear model works best

y=>b+ Zaixi
i

Popular models:

« Linear regression (RMSE reduction)
« LASSO regression (L; norm)

* Ridge regression (L, norm)

A

> O
o) o o O O
o
o O
-
S ) O
© e O
o o
S o Non-linear @ ®
(O data
O

Independent variable(s‘}

Non-linear regression/non-linear model works best

y=>b+ Zf(ai»xi)

Popular models:

Random forest

Support vector machine (SVM)
K-nearest neighbors (KNN)
Neural networks



Overview of linear models

LASSO (L{ norm)

Ly = min(SSR + 4 [18]))

5000

4000 r

3000

2000t

SSR + A mod(B)

1000

slope(m)

Decreases coefficients of non-important
descriptors to O

Can be difficult to get best model

8000

SSR +A*B?

2000t

Ridge (L, norm)

L, = min(SSR + A|IB1[2)

6000

4000 r

-4 -2 0 2 4
slope(m)

Does not necessarily decrease coefficients of
non-important descriptors to 0

Usually easier to get best model compared to

LASSO

19



Overview of non-linear (simple) models

Most non-linear models can be used both for regression and classification

Random forest

Result-1

Majority Voting / Averaging

Final Result

Ensemble model: final decision
is an average of several trees

Each tree: if-else decisions

Handle noisy and ’large’
data

Resistant to overfitting
Less sensitive to training
data

May not be interpretable
Computationally slow for
‘large’ datasets

Support vector machine

X2 Maximum

margin Positive hyperplane

o,
70
L

vectors

,
. .\\>» Support
‘\ ‘\
X X

vectors

Positive hyperplane

|dentify hyperplanes that
separate data into clusters

Efficient at identifying key
descriptors in high-
dimensional space
Memory efficient

e

» Sensitive to noise in data

Maximum
margin
hyperplane

—-

X1

K-nearest neighbors

g
@)
°o°
O
) o &)
New pglnt ® Category B
o ©
o ©

OOO

o Category A

X1

Uses feature similarity (i.e.,
‘distance’ from other points) to
make predictions about
unseen data

« Easy to implement
* Resistant to noisy data

« Memory inefficient (needs to
store entire training data)




Non-linear complex model: neural
network \ /

) S e VAT
Suppose we want to fit the following data "
/7N
)|
N\
@ feeennnnnn ~ ........... / N Pros
= s M - Robust and accurate
> Fitting a simple - Parallel processing
= regression model
S
S
g Cons
o

« Minimal interpretability
« Tendency to overfit

;
-

Independent variable

Neural networks can fit
a squiggle

¥ Optimized biases and weights are obtained via

_/ back propagation

+bl | | sssssssmsnnnns w3

Single layer neural network

Weights and biases determine the part of the
activation function that will contribute to the

squiggle

+b3

Hidden layer

Several types of NNs exist
}&I ~\ Graph NNs particularly relevant for materials

Input layeMN— L T e Output layer 21




Graphs are an intuitive way to model
atoms and bonds

&~ l x1 | x2 | x3

Each node has a feature
vector: collection of atomic
properties (mass, charge, etc.)

Nodes are atoms (features)

Edges represent bonds

— (relationships)
@ x1 | x2 | x3 .-

x1 | x2 | x3

x1 | x2 | x3

Graphical
representation
of the data
(structure)

Embeddings Feed forward to
(pass a NN (fit Regression or
information weights and classification
across bonds) biases)

Suitable
convolutional
scheme

Graph neural networks can make Pros Cons

predictions at three levels Highly accurate Storage/input graph size
» Graph level (overall structure) Message passing: use Inability to distinguish

* Edge level (for a given bond) information from neighbors multiple types of bonds
* Node level (for a given atom) Can take into account Need to ensure

underlying symmetry permuta.tion.al invariance
and equivariance



Message passing: learn from
neighbors

At the end of first
message passing layer

|
|
|
|
|
|
Ix1|x2]|x3
|
|
|
|
|
|

x1
e e e e e e e e e e ( V1 1° b e o
x1 | x2 | x3 hz(k)-
h. (k) (k+1)
1 x1 | x2 | x3 | .. h4(k)__ hl
Aggregate Update

After multiple message

passing layers 23



Examples of regressions in action



Predicting material properties:
Oxygen vacancy formation energy in ABO; perovskites

A ( : S « ABOj; perovskites
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY * A= Ca, Sr, Ba, La’ Or Ce
ub

pubs.acs.org/JACS b B= Ti, V, Cr, Mn, Fe, CO,
or Ni

Factors Governing Oxygen Vacancy Formation in Oxide Perovskites
Robert B. Wexler, Gopalakrishnan Sai Gautam, Ellen B. Stechel, and Emily A. Carter*

Eaeadomme - Database: 341 Datapoints
obtained from density functional

theory (DFT) calculations

Cite This: J. Am. Chem. Soc. 2021, 143, 13212-13227

* Model: A simple linear model with physically intuitive

descriptors O vacancy formation in ABO; perovskites
o Crystal bond dissociation energy
Crystal reduction potential E'gggg E-;:}.lization

~——CB

O
o Band gaps
o Energy above hull

* Performance:
o Mean absolute error (MAE) - 0.45 eV e
o BiFeO; and BiCoO; identified as viable
candidates for solar thermochemical water
splitting

25



Predicting material properties:
Elastic moduli of inorganic compounds

ACS
J @ Cite This: J. Am. Chem. Soc. 2018, 140, 9844—9853 pubs.acs.org/JACS Database 3248 BU I k (B) and

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Shear modulus (G) data
Machine Learning Directed Search for Ultraincompressible, obtained from the Materials
Superhard Materials - Project (MP) database

Aria Mansouri Tehrani,-:-'L' Anton O. Oliynyk,-:"l Marcus Parry,i Zeshan Rizvi,” Samantha Couper,'§
Feng Lin," Lowell Miyagi,’§ Taylor D. Sparks,”® and Jakoah Brgoch*"’

* Model: Support vector machine i
regression using 150 composition and 2 e o
structural descriptors wand

* Performance:
o réscore =0.94
o ldentified incompressible — high
hardness metal ReWC,s and
M00_9W1_1BC with B = 380 and
370 GPa, respectively
o Experimentally verified

predicted shear modulus

il SR WP
predicted bulk modulus

26



Predicting material properties:
Diverse material properties with graph neural network

PHYSICAL REVIEW LETTERS 120, 145301 (2018)

Properties : Formation energy, band

Crystal Graph Convolutional Neural Networks for an Accurate gap, Fermi energy, bulk and shear
and Interpretable Prediction of Material Properties moduli, and Poisson’s ratio

Tian Xie and Jeffrey C. Grossman . 4
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Databa_se' 10 DFT-calculated
Cambridge, Massachusetts 02139, USA datapoints from MP

cﬁ} E T Model: Crystal Graph convolutional
*@Cf) neural network (CGCNN)

| ‘ 5 o
7 7-0_/ s
I : ; : \ .8 Performance:

Formation energy: 0.039 eV/atom
Band gap: 0.388 eV
Fermi energy: 0.363 eV
Elastic moduli: ~1-2 GPa
Poisson’s ratio: 0.03

OQouput o |dentified 228  ‘synthesizable’

perovskites out of 18928 in the

training database

O O O O O O

.....

R Conv L, hidden 3 Pooling L, hidden
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Predicting material properties:
Mechanical properties for energy storage

Mechanically anisotropic interfaces

ce,ntral & Cie This: ACSCen. i 2018, 4, 596-1006 «a  SUpPPress dendrite growth
science  Dependent on G, B, and elastic
Machine Learning Enabled Computational Screening of Inorganic constants.
Solid Electrolytes for Suppression of Dendrite Formation in Lithium
gﬂe:a' AAh"zqefr. i R s Database: Subset of MP containing
sk e Wi i bt 12,000 compounds with Li
Model:
o Graph neural network for G and B

prediction

o Gradient boost and Kernel-ridge
regression for elastic constant

e \
! E i 0
—>: 0 E—» \ . \
_’E %i_’ ) E ) .>O Output

predictions e \./
Performance: Convolution Pooling
o RMSE in log(GPa): 0.1268 (G) and .
0.1013 (B) Material - Convolution/ —p Stability —p Dendrlte.
o 20 interfaces with six solid Database ~ Regression criteria Sngfgsstmg
candalaates

electrolytes predicted to be stable
against dendrite initiation

28



Hands—on session?



Perform ‘simple’ regressions

Data: Shear modulus, band gap, and formation energy from matbench database

10007 TN

Extract and Clean-up the 800} /| I
downloaded datasets 600 7

400¢

Distribution

2007

0.0 0.5 1.0 1.5 2.0 2.5 KNeighborsRegressor, r2: 0.7503
GVRH

---- ideal i %al
—— linear fit yo

Train classical ML models
and optimize the
hyperparameters

Predicted

Actual

Observe the correlation

among the features

30




Overview

KNeighborsRegressor, r2: 0.7503

---- ideal
—— linear fit

©
(]
+—
p
©
()
=
o

Regression models:
examples and utility

Reshma Devi

1 1
1 1
1 1
1 1
1 1
1 1
1 1

| r
1 1
1 1
1 1
1 1
1 1
1 1
1 1

-
E R
T L L Y

Coarse graining models:
the example of cluster
expansion

Dereje Bekele Tekliye

31
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Why lattice models?

« Quantum mechanics (e.g., DFT) provides accurate predictions at 0 K
* High temperature properties?

. DtFT calculations become prohibitively expensive beyond ~1000
atoms

 Simple binary system has 2N possible configurations (N = number of sites)
» 16 sites - 65,536 configurations!

« DFT is not practical for estimating configurational entropy through sampling

 Predicting phase transitions using molecular dynamics is difficult
* Requires ‘long’ timescales and ‘large’ supercells
« Using principles of statistical mechanics may be better

 Lattice models approximate (or abstract) the energetic interactions
within a given structure to ‘smaller’ entities

» Helps capture entropic contributions = high temperature properties
» Predicts order-disorder transition temperatures
« Calculate phase diagrams



Why lattice models?

« Quantum mechanics (e.g., DFT) provides accurate predictions at 0 K
* High temperature properties?

. DtFT calculations become prohibitively expensive beyond ~1000
atoms

 Simple binary system has 2N possible configurations (N = number of sites)
» 16 sites > 65,536 configurations!

« DFT is not practical for estimating configurational entropy through sampling

Why bother about lattice models when considering ML?
« Lattice models: simple ML models

* Provide physical intuition
« Do NOT require large datasets!

Lattice models approximate (or abstract) the energetic interactions
within a given structure to ‘smaller’ entities

» Helps capture entropic contributions = high temperature properties
» Predicts order-disorder transition temperatures
 Calculate phase diagrams

33



What is a cluster expansion?

Lattice model, specifically a generalized Ising model, to abstract energies of a given structure
based on the underlying atomic configuration

« Energy decomposed to clusters, each cluster expanded on a cluster basis (orthonormal)

» Coarse-grains any ‘small’ atomic displacements from ‘ideal’ sites

« Each lattice site obtains an integer value based on atom occupying it (e.g., -1 and +1)
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Simplistic exercise for binary alloy A-B

Defining energy as a function of configuration

.““ E=V,+3V, +2V,o+ V', + V; ...
00000

00 Q00 ¢-

‘ ‘ ‘ ‘ B A1-xBx
0000

But can be done in a more systematic way: cluster expansion formalism

E(o) =V, +ZV 0} +ZV”0,0] +ZV”"G 00 + z Vijki0OiOj00}

ijk i,j k!l a5

Adapted from https://www.youtube.com/watch?v=ViBUCZMZ1q|



https://www.youtube.com/watch?v=VjBUCZMZ1qI

Inputs for building a cluster expansion

DFT training data
The possible configuration of a crystal is obtained by

E, : : : enumerating over symmetrically distinct
. configuration(s) across the composition(s) of interest
00 Formation energies at 0 K
E2 ‘ . ' O \\. T T T T ,/,
00 S . . )
QL -002 | ' o ° : ° ¥ -
00 > ? ;! o . '
— 3 e 0] o
E3 o ‘ o o) 004 L . ' & 8 ) : .', |
. . . GC) \\\ i .. .§ .’/
. Beg O S .
_ 000 S -006 | g o8 1t |
‘900 iz tl .
®0o % 0.08 | ha |
XX 1
E5 . . . _01 I I I I
00 - 0 0.2 0.4 O_.6 0.8 1
A Concentration B 36

Adapted from https://www.youtube.com/watch?v=ViBUCZMZ1q|



https://www.youtube.com/watch?v=VjBUCZMZ1qI

Building a cluster expansion

Sets of clusters
(within a given

‘radius’)
Calculated DFT data Correlation matrix
(Target) (Set of features)

/6%5—1)\ 1 Ty(o1) 1Fﬁ(5'1) ,(8,) - -
T O B RE)

* . :_) :_> '._) .. .
e(d) |=| 1 Tu(a) Tp(d) L) . . vﬁ
: _ _ 14

\e(éy/ \i LG GG LG |/

Cluster expansions are usually an under-determined system: fewer energies than ECls available
« Both linear and non-linear optimization/regression techniques can work

» Popular: LASSO and Genetic Algorithm
» Accuracy of fit: RMSE

» Transferability of fit: CV (Leave one-out or k-fold) -
Adapted from https://github.com/prisms-center/CASMcode demo/



https://github.com/prisms-center/CASMcode_demo/

Cluster expansion+Statistical mechanics

First-Principles Calculation: DFT
Ne
1 1
H = _Vlg + Vnuc( i) += — Tt Enuc({R})
;( o) zz|Ti—rj|

i#j

Cluster expansion Hamiltonian

BE) = Z Tl 1_[ -

ief

Statistical Mechanics Approach

F=—kgT InZ, Z= zexp (—ii?)
Thermodynamic Phase diagram,
quantities diffusivity ...

Adapted from https://github.com/prisms-center/CASMcode demo/

Energies of a “few”
configurations (ground
+ excited states)

V,: effective cluster
interactions (ECIs) fitted to
DFT energies

Sample configurations
over larger length scales
to get statistical averages


https://github.com/prisms-center/CASMcode_demo/

Monte Carlo: Metropolis or kinetic

Monte-Carlo is a general, random sampling algorithm—> can be modified to do importance sampling

Low energy configurations = important samples in materials

1. Select a particle at random, and calculate its energy U (r'V). One implementation of

2. Give the particle a random displacement; 7' = r + A, and calculate its new energy ~ Metropolis, satisfying
N 1 H )
U'™). detailed balance
3. Accept the move from r” to r’ N with probability _ o
e N Provides statistical averages
ace(o — n) = min (1, exp{ ~AU(™) ~UEM)]}) of equilibrium quantities >
phase diagrams, transitions

“Introduction to Monte Carlo methods” by Daan Frenkel



Monte Carlo: Metropolis or kinetic

Monte-Carlo is a general, random sampling algorithm—> can be modified to do importance sampling

Low energy configurations = important samples in materials

Initilization
Load Model, Events and
initialize Tracker

Event Proposal

Randomly propose a
event from events axis

P Kinetic Monte Carlo: dynamic

properties (e.g., diffusivities)

Update Tracker

Update location,
displacement and hop
counter

Calculate Properties

Calculate D, D, H_ and
fetc.

( )
m%!ro ||_1| ||_k| I NI>
v (k) : :
e 40

ot Deng et al., Comput. Mater. Sci., Accepted (2023)



Examples of cluster expansions in
action



Examples of cluster expansions

‘ Ti-Al Ti-Al 2000
Characteristic  Si-Ge Ca0O-MgO hcp fce CuAu
1800 t TiAl
(L1o)
Number of 1600 |
structures 27 20 55 23 33 )
~ 1400
Number of =
clusters 24+8+3 2+3+7+1 2+11+6 2+3+2 2+6 1200 |
CV score, 1000 }
meV/atom 1 18 35 49 23
800 50 60 70 80
The number of clusters is given as the number of each type of multiplet: at. % Ti 2 100
empty and point clusters + pairs + triplets + quadruplets '
500 . , . . 3000 . . ' . 500 ; ; . .
CU3AU 800 - -
450 CuAu . 2 B -
(L1p) Llg) o 400 .
Cu i 2600 | o\ . _
L 2400 300
< 350 { & ° <
e o 2200 = 200
300 \ 2000 H 3
250 1800 Ho - 100
1600 . i ’
200 1 1 L 1 } q 3 1 O 1 | ) L
10 20 30 40 50 0 20 40 60 80 100 0 20 40 60 80 100
at. % Au at. % MgO at. % Si

A. van de Walle and G. Ceder, J Phase Equilib. 23, 348-359 (2002) 42



Examples of cluster expansions

Phase diagram construction

1400

' 2400717171

. . 2200

Solid Solution ] 0-ZrO, ] 00 L

2000

| — 1800 Y

| © 1600

| 1 2 1400
©

0-Zr0, © 1200
o

€ 1000
o

| L T T T
Single Phase i

1200 -

1000 -

800

T (X)
T

L

600

T

8-V,0; + (8)-MgV,0, .
+ | F 800 -
8'-ZrO a-ZrO, 600 g

- i 400 J

ZrOy) §'-ZrO 0))
400} +

2001
8'-ZrO

P TR R TR SRR SRR SRR SRR R S
2000 01 02 03 04 05 06 07 08 0.9 1

04 0.5 06 07 0.8 Mg Concentration

Atomic Fraction Oxygen .
B. Puchala and A. Van der Ven, Phys. Rev. B, 094108 (2013) 9(’37.3836_1;332211t(a2r81e5t)al., Chem. Mater. 27,

Il
0.0 0.1

. .. . -600 00 05 10 15 20 25 30
Diffusivity calculations *mEooCOmE ~ 5«7
000003 = 55T 573 K i
Local cluster expansion SHO DO EE O 08 Z6F LAY e L,
coupled with kinetic Monte 2 sl LI I A T [ 1] -s004f 2 Tl -
Carlo simulation B OEOOOO | 20f 20/ oef8 E
CTEEOODOEE | oS 20f # ]
Z. Deng and G. Sai Gautam et al., I HEEEEN | Tk h
Nat. Commun. 13, 4470 (2022) e < B8 143



Hands—on session?



Build a ‘simple’ cluster expansion

- CASM

Clusters Approach to Statistical Mechanics

The Alloy-Theoretic Automated Toolkit (ATAT): A User

Guide
Statistical Mechanics on Lattices
And run a sample Monte-Carlo! _/ [ . t
ICe
® 500 T T T T T T
° = L DFT hull |{
~550 - < 4001 —— CEhull []
> < 3 300 - ~ pr?
© -560 . 3 L§ { CEfit |4
o ® g °e 5 20T ° L, ‘_
9 -570 ¢ 100f
A g o Lﬁ L
e 0
A 10 g —580 _5 I
z > g = —100»—
Pe) 3 e
~590 = —-200¢f
/b‘c) 54 X L 300-| L 1 . 1 . 1 . 1 L1 L |-
ﬂ;}x,x . 6 600 . ~7770.0 05 1.0 1.5 2.0 25 3.0
//Q'ng, > 0.00 0.05 0.10 0.15 0.20 0.25 xin Na1+xzr28ixP3-xo12

y N Li+ concentration 45



Overview

KNeighborsRegressor, r2: 0.7503

---- ideal
—— linear fit

©
(]
+—
p
©
()
=
o

Regression models:
examples and utility

Reshma Devi
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Coarse graining models:
the example of cluster

expansion

Dereje Bekele Tekliye
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Machine learned
interatomic potentials:
construction and usage

Agshat Seth



Why interatomic potentials?

Interatomic potentials: simulate ‘large’ length-scale or ‘long’ time-scale phenomena
» Classical force-fields

* Length: ~nm, Time: ~ns (with molecular dynamics)

 Interfaces, diffusivities, rapid phase transitions (- phase diagrams)

« Underlying structure can change (vs. lattice models)

« Computational cost-accuracy trade-off

Interatomic potentials model the potential energy surface of a given material

Lennard-Jones: U(r) = 4e [(%)12 — (%)6]

1.8 T T TTTTTTT T T T T T TTT
=== scaling law (scaling exponent: 0.098)

m— scaling law (scaling exponent: 0.117) 8

T " 10
7 N
8 _1.6
7 | af 8 : S
1 6t / zlil:1.4
i 7 =
'Q: 4 |
] o g 1.2
o a -
] 1 1 2+ 5 A _3
0 1 I 2 3 4 2 iy o —4
rlc olae=o,  F
07 08 09 10 100 ) L LR ) I ] 1 ) 1 L)
|
. 0.1 0.6
Tipeev et al., J. Phys. Chem. C 122, 28884-28894 (2018) . .

T
Miao and Yuan, Phys. Chem. Chem. Phys. 25, 7487-7495 (2023)47



Why machine learned interatomic
potentials (MLIPs)?

Classical force-fields have difficulties in modelling ‘complex’ potential energy surfaces
« Diversity of species and bonding environments
« Limited accuracy vs. DFT

E E

MLIPs: Flexible functional form V 4

« Can handle diversity of species and bonding environments
« Introduce permutation, rotation invariance
* Improved accuracy vs. DFT compared to classical force-fields

Hidden

Atomic Input Layer
O Fingerprint a local

N ASK =\ environment around
A @GN a reference atom
+ machine-learning
model
= MLIP

Output
Layer

Bartok and Csanyi, Int. J. Quantum Chem. 116, 1049 (2016)

48

Mishin, Acta Mater. 214, 116980 (2014) Kocer et al.. J. Chem. Phvs. 150. 154102 (2019)



How do MLIPs work?

131\11 = E\ Energies and forces

PES PES: Potential (single-point)
_ 9 Regression (“learning”) of
T energy surface ; = potential-energy surface
= Sum of atomic ¢ A i fe.
@1\ energies ¥
y{\ Other atoms . unknon PES
E. ’TD Construction of & X (3N dimensional) ( (descriptors)
i " reference database
WelghtS biases Deringer et al., Adv. Mater. 31, 1902765 (2019) 9 Representation of
Reg ression d ’ ! atomic environments
h Typically MLIPs are trained on total energies, atomic forces,
hyperparameters : - -
and lattice stresses of several different structures in a

Local structural | Fingerprint the chemical space
parameters | local environment

Popular MLIPs:
Artificial neural network potential (ANNP)
Gaussian approximation potential (GAP)

o ® e ® Definea

© o000 neighborhood of

‘. interest for each
e ° atom

Moment tensor potential (MTP)
Spectral neighbor analysis potential (SNAP)
o Neural equivariant interatomic potential (NequlP)

Mishin, Acta Mater. 214, 116980 (2014)



Moment tensor potential: ‘classic’

n; - atomic environment (within a cut-off radius)
E V I‘l, comprising of a reference atom, its neighbours, and
their relative positions

E™P(cfg) =
=1

V. function invariant to permutations, rotations, and reflections
« Smooth with respect to exchange of atoms from neighborhood

Basis functions: written up to a maximum ‘level’ of
— faB ] ‘ ’
contracted’ moment tensors

& \Weights to be fit

Moment M, () Z fM |rl]| ZnZ])er R...Q rZ] levM,,, =2 +4u+v

tensor: j ~ lev(My5:Mp,) =(2+4+2)+(2+0+2)=12
/ v times \

Radial component Angular component

Expanded via radial basis functions: pair-wise Expanded via tensors: many-body

No v = 0 - Scalar
fullrglz5) = > el @ P Irl)

B=1

v =1 > Vector; ¥ij = (%ij, Vij, Zij)
. . Chebychev polynomials Xp Xl XiZi
Weights to be fit s ooth cut-off function v =2 > Tensorser = |y 75 iz
50

2
Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021) vy i Y



Moment tensor potential: fitting
> [ e @@ - cte)) HHTL, [ cls0) — ()|

k=1
2 :
+@] o™P(cfg,;0) — 0¥ (cfg,) | ] — min,
Set of k configurations in the 0: parameters to be fit (§,c)  gm: DFT or other quantum
training set mechanical tools
Energies, forces, and stresses considered within loss function Hyperparameters
K 2
1 E™P(cfg;0) EY™(cfg,)
25 . = k> . k
RMSE(E)? = K; ( N N :
@\\'\:
K Nk /—/' &2
1 1 2 O OXN
2 mtp 2 qm Ay
RMSE(D = 3 sy 2 67" (ces6) — €7 (cfe) Ve /@
= i ° \\4 ° i
G0
P 2
2 .. = mtp . __ -qm
RMSE(U) K Z 9 |O (Cfgk’ 0) < (Cfgk) l ' Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)

=1 https://www.skoltech.ru/app/data/uploads/2019/09/THESIS FINAL.pdf 51



https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf

Moment tensor potential: fitting
) [@ (B (g ) — Ecfy,))” +Hm o, €7 (cfigys6) — £ (cfgy)|

-I-@} o™P(cfg,;0) — ot (cfg,) |2] — min,

0
Set of k configurations in the 0: parameters to be fit (§,c)  gm: DFT or other quantum
training set mechanical tools
Energies, forces, and stresses considered within loss function Hyperparameters

Once MTP is fit, can be used for both static and dynamic runs
« Using ‘LAMMPS’ for example

Also has ability to perform active learning during predictions

« Using an ‘extrapolation grade’

« Structures outside a confidence interval can be calculated with DFT and the potential
retrained

K 9" & ' & Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021) 5
=1 https://www.skoltech.ru/app/data/uploads/2019/09/THESIS FINAL.pdf S



https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf

Neural equivariant interatomic potential:
‘recent’

Based on using deep, graph neural networks to construct
interatomic potentials

Every atom has a feature vector of different orders (scalars,
vectors, and tensors)

t 1
po ieN lr,atomic

1=0,1,2,...

atoms
F; = _viEpot

The of the vector
1s invariant to translation
and equivariant to rotation

Initial Embedding of Features < Embedding

Interaction Block <€¢——

The magnitude of the Encode the Interaction Interaction Block  €————
The location (pOSitiO[]) of ' vector 1S invariant to between neighbouring atoms
the vector is equivariant to translation and rotation Interaction Block  4———
translation and rotation
Update the atomic features Self-interaction
1 N 3 aE 2 (reduces the feature vector to | Output Block
T 2 a Single scalar) Self-Interaction
L=MllE—EIP + A= 3 || -~ F,,
3Niz1a=1|| Or;,
)

Batzner et al., Nat. Commun. 13, 2453 (2022) 53




NequlP: code blocks

1=0,1,2,... (F1y...,7n) 1=0,1,2,... (F1,... 7n)

Self-Interaction

Concatenation

(Z1,...2,) (%)
Self-Interaction
Self-Interaction Layer: Mix atomic features having same 5 Sln(bn
. . . . . z]
order and mirror parity, reduces dimensionality B(r;) = - ——fem(rijs 1)
c z]

Convolution Layer: Rotational equivariance ()= e
S (7)) = R(r) Y,/ (7;)
Concatenation: Recombines feature vectors to form new

feature vectors
Batzner et al., Nat. Commun. 13, 2453 (2022)

Angular component: spherical harmonics
54



Examples of MLIPs in action



Sample usage of MLIPs so far

Predicting Li migration energies for cathode coating Effect of defects on deformation and
materials (MTP) failure in Mg (ANNP)

Composition S ERE] = s

Ea (eV) R —5— MEAM2
LizSco(POy)3 0.62 £ 0.04 0.65 % o0
Li,BsOoF 0.79 + 0.10 0.92
LiCl 1.11 £ 0.13 0.83
Wang et al., Chem. Mater. 32, 3741-52 (2020) 0

Along fault vector

Stricker et al., Phys Rev Mater 4, 103602 (2020)

Growth mechanism in amorphous carbon
(GAP)

T | I I
Exp. by Gilkes et al. —
GAP simulation - - -

—=: 1 |

g(r)
I

0 1 2 3 4 ) 6 7 8

Caro et al., Phys. Rev. Lett. 120, 166101 (2018)

.
-'

Batzner et al., Nat. Commun. 13, 2453 (2022) 56



Hands—on session?



Build MTP and NequlP

itlab.com/ashapeev/mlip-2

Errors report ——— Final result: ——

Energy f_mae = 2.358706
Errors checked for 83 configurations f rmse = 3.224275
Maximal absolute difference = 0.937032 H ? mae = 1.773994
Average absolute difference = 0.0810972 Cf _ 3.026947
RMS absolute difference = 0.140761 — Il = "

psavg_f_mae = 2.400471

Energy per atom: H_f_rmse = 2.496266
Errors checked for 83 configurations C_f_rmse = 3.893006
Maximal absolute difference = 0.0669308 psavg_f_rmse = 3.194636
Average absolute difference = 0.00579266 e mae = 1.038272
RMS absolute difference = 0.0100543 e/N:mae - 0.069218

Forces: f_mae = 2.358706
Errors checked for 1162 atoms f_rmse = 3.224275
Maximal absolute difference = 1.06028 H_f_mae = 1.773994
Average absolute difference = 0.0441032 C_f_mae = 3.026947
RMS absolute difference = 0.0917132 psavg_f_mae = 2.400471
Max(ForceDiff) / Max(Force) = 0.189541 H_f_rmse = 2.496266
RMS(ForceDiff) / RMS(Force) = 0.321722 C_f rmse = 3.893006

psavg_f_rmse = 3.194636
e_mae = 1.038272



https://gitlab.com/ashapeev/mlip-2
https://github.com/mir-group/nequip.git

Conclusions and some thoughts to chew

» Designing better materials critical for performance

improvement in several applications THIS 1S YOUR MACHINE LEARNING SYSTEM?
« Computations + ML can significantly accelerate YUP! YOU POUR THE DATA INTO THIS BIG
materials design PILE OF LINEAR ALGEBRA, THEN COLLECT

THE ANSLERS ON THE OTHER SIDE.

» Different ways to use ML (or precursors to ML
Y - (or precursor ) WHAT IF THE ANSUERS ARE LIRONG? )
* Regressions (or classifications): predict properties

using experimental/calculated properties JUST STiR THE PILE. UNTIL
« Coarse graining: model larger/longer phenomena on THEY START (OOKING RIGHT,

a fixed lattice

» Interatomic potentials: model larger/longer
phenomena on a dynamic lattice

« Materials science is a data-limited domain
» Garbage in = Garbage out; data normalization

+  What model to choose? Simple models are usually
better

« Choose features carefully: physically intuitive?

* Don’t do ML just because you can (hammer doesn’t
beget a nail)

« Construct models with care: overfitting, lack of
transferability

saigautamg@iisc.ac.in; https://sai-mat-group.qgithub.io; https:/github.com/sai-mat-group 59
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