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Why bother about materials science?

3

Key performance bottlenecks in key applications: governed by materials used

B. Dunn et al., Science 2011

Energy and power density of a battery: limited by materials used as 
electrodes (and at times, electrolytes)

Key material properties: stability, ionic mobility, reaction energies

Efficiency of a photovoltaic: choice of semiconductor used as the 
light absorber

Key material properties: band gap, stability, resistance to point 
defects

Usage of better materials à better performance



Why use machine learning (ML) in 
materials science?

4

Technological innovation and deployment is a ‘slow’ process: often limited by materials

Gross et al., Energy Policy 123, 682-699 (2018)
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Technological innovation and deployment is a ‘slow’ process: often limited by materials

Gross et al., Energy Policy 123, 682-699 (2018)

Innovation is 
particularly 
slow in 
energy 
generation 
sector!

Faster ways of discovering new/better materials à faster innovation cycles

Machine learning à “model” materials/“predict” properties faster



Materials Genome (2011-present)
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Evolution of ‘modelling’ in materials 
science
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Types of ML in materials science
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Regressions: make property 
predictions better with 
‘simple’ inputs 
(also classifications)

Coarse graining: create 
‘simple’ models to mimic 
properties of larger lattice(s)

Interatomic potentials: 
describe potential energy 
surface accurately



Types of ML in materials science
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Regressions: make property 
predictions better with 
‘simple’ inputs 
(also classifications)

Coarse graining: create 
‘simple’ models to mimic 
properties of larger lattice(s)

Interatomic potentials: 
describe potential energy 
surface accurately

This is not the complete classification: language models, transfer- or reinforcement-
learned models, artificial intelligence (AI) models, etc.



Where does the data come from?
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Liu et al., Sci. China Tech. Sci. 62, 4 (2019)

Data organization: python/API

ML: python

https://matbench.materialsproject.org/

https://matbench.materialsproject.org/


Overview

1
2

Regression models: 
examples and utility

Coarse graining models: 
the example of cluster 
expansion

Machine learned 
interatomic potentials: 
construction and usage 

Reshma Devi Dereje Bekele Tekliye Aqshat Seth



Regression models: things to note
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Model interpretability vs. 
predictive power trade off 
(e.g., complex neural networks 
vs. simple regression models)

Important considerations

How large is your data?

How and with what ease can 
your model be used by the 
research community?

Wang et al., Chem. Mater., 32, 4954-4965 (2020)

Objectives of a ML model

Screen materials from a database for a given 
application or property

Process data to gain new insights

Conceptualize new modelling approaches



What model to choose? 

14

• “Smaller” data sets - simpler models
o Ridge/Lasso regression
o K-nearest neighbours
o Random forest
o Support vector machines

• “Larger” data sets - complex models
o Neural networks (NNs)
o Graph neural networks (GNN)
o Crystal graph convolutional neural network (CGCNN)
o Atomistic line graph neural network (ALIGNN)

Simpler models are interpretable but less accurate, typically



What model to choose? 
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• “Smaller” data sets - simpler models
o Ridge/Lasso regression
o K-nearest neighbours
o Random forest
o Support vector machines

• “Larger” data sets - complex models
o Neural networks (NNs)
o Graph neural networks (GNN)
o Crystal graph convolutional neural network (CGCNN)
o Atomistic line graph neural network (ALIGNN)

• Human interpretable
• Provides chemical and physical 

insights
• Low accuracy

• "Black Box"
• Does not provide chemical/physical 

insights
• High accuracy

Simpler models are interpretable but less accurate, typically



How to quantify model accuracy?
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Independent variable

Residual

Higher accuracy à smaller squared sum of residuals 
(SSR)

Regression models (continuous target)
• r2

• Mean absolute error (MAE)
• Root mean square error (RMSE)

Classification models (binary target)
• Accuracy: fraction of correct predictions
• Precision: fraction of correct ‘positives’ among all 

positives
• Recall: actual fraction of correct ‘positives’
• Receiver operator characteristic (ROC) curve

How do we know our model isn’t overfit on data?

Need to test our model on ‘unseen’ data
• k-fold cross-validation (CV) score (simple models)
• Error on test dataset (complex models)



How to quantify model accuracy?

17

De
pe

nd
en

t v
ar

ia
bl

e

Independent variable

Residual

Higher accuracy à smaller squared sum of residuals 
(SSR)

Regression models (continuous target)
• r2

• Mean absolute error (MAE)
• Root mean square error (RMSE)

Classification models (binary target)
• Accuracy: fraction of correct predictions
• Precision: fraction of correct ‘positives’ among all 

positives
• Recall: actual fraction of correct ‘positives’
• Receiver operator characteristic (ROC) curve

How do we know our model isn’t overfit on data?

Need to test our model on ‘unseen’ data
• k-fold cross-validation (CV) score (simple models)
• Error on test dataset (complex models)

Model complexity

r2

Significant deviation between training and test errorsà overfit model



Linear and non-linear models
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Relationship of target data can be linear/non-linear with underlying independent variables (descriptors)

Independent variable(s)

Ta
rg

et
 p

ro
pe

rty

Independent variable(s)

Ta
rg

et
 p

ro
pe

rty

Linear regression/linear model works best Non-linear regression/non-linear model works best

𝑦 = 𝑏 + %
!

𝑎!𝑥! 𝑦 = 𝑏 + %
!

𝑓(𝑎! , 𝑥!)

Popular models:
• Linear regression (RMSE reduction)
• LASSO regression (L1 norm)
• Ridge regression (L2 norm)

Popular models:
• Random forest
• Support vector machine (SVM)
• K-nearest neighbors (KNN)
• Neural networks



Overview of linear models

19

LASSO (L1 norm) Ridge (L2 norm)

𝐿" = min(𝑆𝑆𝑅 + 𝜆 𝛽 ") 𝐿" = min(𝑆𝑆𝑅 + 𝜆 𝛽 #
#)

𝜆 𝜆

Decreases coefficients of non-important 
descriptors to 0

Can be difficult to get best model

Does not necessarily decrease coefficients of 
non-important descriptors to 0

Usually easier to get best model compared to 
LASSO



Overview of non-linear (simple) models
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Most non-linear models can be used both for regression and classification

Random forest Support vector machine K-nearest neighbors

Ensemble model: final decision 
is an average of several trees

Each tree: if-else decisions
• Handle noisy and ’large’ 

data
• Resistant to overfitting
• Less sensitive to training 

data

• May not be interpretable
• Computationally slow for 

’large’ datasets

• Efficient at identifying key 
descriptors in high-
dimensional space

• Memory efficient

• Sensitive to noise in data

• Easy to implement
• Resistant to noisy data

• Memory inefficient (needs to 
store entire training data)

Identify hyperplanes that 
separate data into clusters

Uses feature similarity (i.e., 
‘distance’ from other points) to 
make predictions about 
unseen data



Non-linear complex model: neural 
network

21

Fitting a simple 
regression model

Neural networks can fit 
a squiggle

Suppose we want to fit the following data 

De
pe

nd
en

t v
ar

ia
bl

e

Independent variable

I/P O/P

w1

+b1

w2

+b2

w3

+b3

w4

+b4

+b5

Single layer neural network

Optimized biases and weights are obtained via 
back propagation
Weights and biases determine the part of the 
activation function that will contribute to the 
squiggleHidden layer

Input layer Output layer

Pros
• Robust and accurate
• Parallel processing 

Cons
• Minimal interpretability
• Tendency to overfit

Several types of NNs exist
Graph NNs particularly relevant for materials



Graphs are an intuitive way to model 
atoms and bonds
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1

2
5

3

4 x1 x2 ..x3

x1 x2 ..x3

x1 x2 ..x3

x1 x2 ..x3
x1 x2 ..x3

Edges represent bonds
(relationships)

Nodes are atoms (features)Each node has a feature
vector: collection of atomic
properties (mass, charge, etc.)

Graphical 
representation 

of the data 
(structure)

Suitable 
convolutional 

scheme

Embeddings 
(pass 

information 
across bonds)

Feed forward to 
a NN (fit 

weights and 
biases)

Regression or 
classification

Graph neural networks can make 
predictions at three levels
• Graph level (overall structure)
• Edge level (for a given bond)
• Node level (for a given atom)

Cons
• Storage/input graph size
• Inability to distinguish 

multiple types of bonds
• Need to ensure 

permutational invariance 
and equivariance

Pros
• Highly accurate
• Message passing: use 

information from neighbors
• Can take into account

underlying symmetry



Message passing: learn from 
neighbors
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Examples of regressions in action

24



Predicting material properties: 
Oxygen vacancy formation energy in ABO3 perovskites

25

• ABO3 perovskites
• A= Ca, Sr, Ba, La, or Ce
• B= Ti, V, Cr, Mn, Fe, Co,

or Ni

• Database: 341 Datapoints
obtained from density functional
theory (DFT) calculations

• Model: A simple linear model with physically intuitive
descriptors
o Crystal bond dissociation energy
o Crystal reduction potential
o Band gaps
o Energy above hull

• Performance:
o Mean absolute error (MAE) - 0.45 eV
o BiFeO3 and BiCoO3 identified as viable

candidates for solar thermochemical water
splitting



Predicting material properties: 
Elastic moduli of inorganic compounds

26

Database: 3248 Bulk (B) and
shear modulus (G) data
obtained from the Materials
Project (MP) database

• Model: Support vector machine
regression using 150 composition and
structural descriptors

• Performance:
o r2 score = 0.94
o Identified incompressible – high

hardness metal ReWC0.8 and
Mo0.9W1.1BC with B = 380 and
370 GPa, respectively

o Experimentally verified



Predicting material properties: 
Diverse material properties with graph neural network

27

Properties : Formation energy, band
gap, Fermi energy, bulk and shear
moduli, and Poisson’s ratio

Database: 104 DFT-calculated
datapoints from MP

Model: Crystal Graph convolutional
neural network (CGCNN)

Performance:
o Formation energy: 0.039 eV/atom
o Band gap: 0.388 eV
o Fermi energy: 0.363 eV
o Elastic moduli: ~1-2 GPa
o Poisson’s ratio: 0.03
o Identified 228 ‘synthesizable’

perovskites out of 18928 in the
training database



Predicting material properties: 
Mechanical properties for energy storage

28

Mechanically anisotropic interfaces
suppress dendrite growth
• Dependent on G, B, and elastic

constants.

Database: Subset of MP containing
12,000 compounds with Li

Model:
o Graph neural network for G and B

prediction
o Gradient boost and Kernel-ridge

regression for elastic constant
predictions

Performance:
o RMSE in log(GPa): 0.1268 (G) and

0.1013 (B)
o 20 interfaces with six solid

electrolytes predicted to be stable
against dendrite initiation



Hands—on session?

29



Perform ‘simple’ regressions

30

1 Extract and Clean-up the 
downloaded datasets

2 Train classical ML models 
and optimize the 
hyperparameters

3 Observe the correlation 
among the features

Data: Shear modulus, band gap, and formation energy from matbench database



Overview
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Regression models: 
examples and utility

Coarse graining models: 
the example of cluster 
expansion

Machine learned 
interatomic potentials: 
construction and usage 

Reshma Devi Dereje Bekele Tekliye Aqshat Seth



Why lattice models?
• Quantum mechanics (e.g., DFT) provides accurate predictions at 0 K

• High temperature properties?

• DFT calculations become prohibitively expensive beyond ~1000 
atoms
• Simple binary system has 2N possible configurations (N = number of sites)

• 16 sites à 65,536 configurations!
• DFT is not practical for estimating configurational entropy through sampling

• Predicting phase transitions using molecular dynamics is difficult
• Requires ‘long’ timescales and ‘large’ supercells
• Using principles of statistical mechanics may be better

• Lattice models approximate (or abstract) the energetic interactions 
within a given structure to ‘smaller’ entities
• Helps capture entropic contributions à high temperature properties
• Predicts order-disorder transition temperatures
• Calculate phase diagrams

32



Why lattice models?
• Quantum mechanics (e.g., DFT) provides accurate predictions at 0 K

• High temperature properties?

• DFT calculations become prohibitively expensive beyond ~1000 
atoms
• Simple binary system has 2N possible configurations (N = number of sites)

• 16 sites à 65,536 configurations!
• DFT is not practical for estimating configurational entropy through sampling

• Predicting phase transitions using molecular dynamics is difficult
• Requires ‘long’ timescales and ‘large’ supercells
• Using principles of statistical mechanics may be better

• Lattice models approximate (or abstract) the energetic interactions 
within a given structure to ‘smaller’ entities
• Helps capture entropic contributions à high temperature properties
• Predicts order-disorder transition temperatures
• Calculate phase diagrams

33

Why bother about lattice models when considering ML?
• Lattice models: simple ML models
• Provide physical intuition
• Do NOT require large datasets!



What is a cluster expansion?

34

Lattice model, specifically a generalized Ising model, to abstract energies of a given structure 
based on the underlying atomic configuration
• Energy decomposed to clusters, each cluster expanded on a cluster basis (orthonormal)
• Coarse-grains any ‘small’ atomic displacements from ‘ideal’ sites
• Each lattice site obtains an integer value based on atom occupying it (e.g., -1 and +1)

G. Sai Gautam, and P. Canepa; Magnesium Batteries, Chap. 4, (2019)

𝐸 �⃗� = %
$

𝑚$𝑉$9
!%&

𝜎!



Simplistic exercise for binary alloy A-B

E = V0

𝑬 𝝈 = 𝑽𝒐 +%
𝒊

𝑽𝒊𝝈𝒊 +%
𝒊,𝒋

𝑽𝒊,𝒋𝝈𝒊𝝈𝒋 +%
𝒊,𝒋,𝒌

𝑽𝒊,𝒋,𝒌𝝈𝒊𝝈𝒋𝝈𝒌 + %
𝒊,𝒋,𝒌,𝒍

𝑽𝒊,𝒋,𝒌,𝒍𝝈𝒊𝝈𝒋𝝈𝒌𝝈𝒍

+ V3 … +3V1 + 2V2+ V’2

A
B

Defining energy as a function of configuration

But can be done in a more systematic way: cluster expansion formalism

A1-xBx

35
Adapted from https://www.youtube.com/watch?v=VjBUCZMZ1qI

https://www.youtube.com/watch?v=VjBUCZMZ1qI


E1

E2

E3

E4

E5

Inputs for building a cluster expansion
DFT training data

Formation energies at 0 K

Concentration
…

The possible configuration of a crystal is obtained by 
enumerating over symmetrically distinct 
configuration(s) across the composition(s) of interest

36A B
Adapted from https://www.youtube.com/watch?v=VjBUCZMZ1qI

https://www.youtube.com/watch?v=VjBUCZMZ1qI


Building a cluster expansion

Correlation matrix
(Set of features)

Calculated DFT data
(Target)

Effective cluster interactions
(Weights)

Sets of clusters
(within a given 
‘radius’)

37

Cluster expansions are usually an under-determined system: fewer energies than ECIs available
• Both linear and non-linear optimization/regression techniques can work

• Popular: LASSO and Genetic Algorithm
• Accuracy of fit: RMSE
• Transferability of fit: CV (Leave one-out or k-fold)

Adapted from https://github.com/prisms-center/CASMcode_demo/

https://github.com/prisms-center/CASMcode_demo/


Cluster expansion+Statistical mechanics

38

𝑯 =#
𝒊"𝟏

𝑵𝒆

−𝜵𝒊𝟐 + 𝑽𝒏𝒖𝒄 𝒓𝒊 +
𝟏
𝟐
#
𝒊)𝒋

𝟏
𝒓𝒊 − 𝒓𝒋

+ 𝑬𝒏𝒖𝒄 𝑹

First-Principles Calculation: DFT Energies of a “few” 
configurations (ground 
+ excited states)

Cluster expansion Hamiltonian
𝐸 �⃗� = #

+

𝑚+𝑉+2
,-.

𝜎,

𝑽𝜶: effective cluster 
interactions (ECIs) fitted to 
DFT energies

Sample configurations 
over larger length scales 
to get statistical averages

Statistical Mechanics Approach
𝐙 = #

𝝈

𝒆𝒙𝒑 −
𝑬(𝝈)
𝒌𝑩𝑻

𝐅 = −𝒌𝑩𝑻 ln 𝒁 ,

Monte Carlo Simulation

Thermodynamic 
quantities

Phase diagram, 
diffusivity …

Adapted from https://github.com/prisms-center/CASMcode_demo/

https://github.com/prisms-center/CASMcode_demo/


Monte Carlo: Metropolis or kinetic

39

Monte-Carlo is a general, random sampling algorithmà can be modified to do importance sampling

“Introduction to Monte Carlo methods” by Daan Frenkel

Low energy configurations à important samples in materials

One implementation of 
Metropolis, satisfying 
‘detailed balance’

Provides statistical averages 
of equilibrium quantities à
phase diagrams, transitions



Monte Carlo: Metropolis or kinetic

40

Monte-Carlo is a general, random sampling algorithmà can be modified to do importance sampling
Low energy configurations à important samples in materials

Event Proposal

Initilization

Update Event

Update Tracker

Rejection-free Kinetic Monte Carlo

Calculate Properties

Repeat i kM
C

 stepsRe
pe

at
 j 

In
iti

al
 S

tru
ct

ur
es

Γ0 Γ1 ... ΓN

Γtot(k)

Γk ...

Γtot

a

b

Load Model, Events and 
initialize Tracker

Randomly propose a 
event from events axis

Update occupation, 
barrier and probability 

Update location, 
displacement and hop 
counter

Calculate DJ, D*, HR and 
f etc.

Event Proposal

Deng et al., Comput. Mater. Sci., Accepted (2023)

Kinetic Monte Carlo: dynamic 
properties (e.g., diffusivities)



Examples of cluster expansions in 
action

41



Examples of cluster expansions

A. van de Walle and G. Ceder, J Phase Equilib. 23, 348-359 (2002) 42



Examples of cluster expansions
Phase diagram construction

G. Sai Gautam et al., Chem. Mater. 27, 
3733-3742 (2015)B. Puchala and A. Van der Ven, Phys. Rev. B, 094108 (2013)

Diffusivity calculations
Local cluster expansion 
coupled with kinetic Monte 
Carlo simulation

Z. Deng and G. Sai Gautam et al., 
Nat. Commun. 13, 4470 (2022) 43



Hands—on session?

44



Build a ‘simple’ cluster expansion

45

And run a sample Monte-Carlo!
icet



Overview

46

Regression models: 
examples and utility

Coarse graining models: 
the example of cluster 
expansion

Machine learned 
interatomic potentials: 
construction and usage 

Reshma Devi Dereje Bekele Tekliye Aqshat Seth



Why interatomic potentials?

47

Interatomic potentials: simulate ‘large’ length-scale or ‘long’ time-scale phenomena
• Classical force-fields
• Length: ~nm, Time: ~ns (with molecular dynamics)
• Interfaces, diffusivities, rapid phase transitions (àphase diagrams)
• Underlying structure can change (vs. lattice models)
• Computational cost-accuracy trade-off

Interatomic potentials model the potential energy surface of a given material

𝑈 𝑟 = 4𝜖
𝜎
𝑟

"#
−

𝜎
𝑟

.

Miao and Yuan, Phys. Chem. Chem. Phys. 25, 7487-7495 (2023)

Lennard-Jones:

𝑈
/𝜖

Tipeev et al., J. Phys. Chem. C 122, 28884-28894 (2018)



Why machine learned interatomic 
potentials (MLIPs)?

48

Classical force-fields have difficulties in modelling ‘complex’ potential energy surfaces
• Diversity of species and bonding environments
• Limited accuracy vs. DFT

Mishin, Acta Mater. 214, 116980 (2014)

MLIPs: Flexible functional form
• Can handle diversity of species and bonding environments
• Introduce permutation, rotation invariance
• Improved accuracy vs. DFT compared to classical force-fields

Kocer et al., J. Chem. Phys. 150, 154102 (2019)

Bartók and Csányi, Int. J. Quantum Chem. 116, 1049 (2016)

Fingerprint a local 
environment around 
a reference atom
+ machine-learning 
model
= MLIP



How do MLIPs work?

49Mishin, Acta Mater. 214, 116980 (2014)

Define a 
neighborhood of 
interest for each 
atom

Fingerprint the 
local environment

Weights, biases, 
and 
hyperparameters

PES: Potential 
energy surface
= Sum of atomic 
energies

Typically MLIPs are trained on total energies, atomic forces, 
and lattice stresses of several different structures in a 
chemical space

Popular MLIPs:
• Artificial neural network potential (ANNP)
• Gaussian approximation potential (GAP)
• Moment tensor potential (MTP)
• Spectral neighbor analysis potential (SNAP)
• Neural equivariant interatomic potential (NequIP)

Deringer et al., Adv. Mater. 31, 1902765 (2019)



Moment tensor potential: ‘classic’

50

𝑛< - atomic environment (within a cut-off radius) 
comprising of a reference atom, its neighbours, and 
their relative positions

𝑉: function invariant to permutations, rotations, and reflections
• Smooth with respect to exchange of atoms from neighborhood

Basis functions: written up to a maximum ‘level’ of 
‘contracted’ moment tensors

Radial component Angular component

Moment 
tensor:

lev𝑀/,0 = 2 + 4𝜇 + v

Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)

Expanded via radial basis functions: pair-wise Expanded via tensors: many-body

lev(M1,3:𝑀4,3)	=	(2	+	4	+	2)	+	(2	+	0	+	2)	=	12

Weights to be fit Chebychev polynomials
⨉ smooth cut-off function

𝜈 = 0à Scalar

𝜈 = 1à Vector;

𝜈 = 2à Tensor;

Weights to be fit



Moment tensor potential: fitting

51

Set of k configurations in the 
training set

𝜃: parameters to be fit (𝜉, 𝑐) qm: DFT or other quantum 
mechanical tools 

Energies, forces, and stresses considered within loss function Hyperparameters

Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)
https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf

https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf


Moment tensor potential: fitting

52

Set of k configurations in the 
training set

𝜃: parameters to be fit (𝜉, 𝑐) qm: DFT or other quantum 
mechanical tools 

Energies, forces, and stresses considered within loss function Hyperparameters

Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)
https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf

Once MTP is fit, can be used for both static and dynamic runs
• Using ‘LAMMPS’ for example

Also has ability to perform active learning during predictions
• Using an ‘extrapolation grade’
• Structures outside a confidence interval can be calculated with DFT and the potential 

retrained

https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf


Neural equivariant interatomic potential: 
‘recent’
Based on using deep, graph neural networks to construct 
interatomic potentials
Every atom has a feature vector of different orders (scalars, 
vectors, and tensors)

Batzner et al., Nat. Commun. 13, 2453 (2022) 53



NequIP: code blocks

54Batzner et al., Nat. Commun. 13, 2453 (2022)

Angular component: spherical harmonics

Self-Interaction Layer: Mix atomic features having same 
order and mirror parity, reduces dimensionality

Convolution Layer: Rotational equivariance

Concatenation: Recombines feature vectors to form new 
feature vectors



Examples of MLIPs in action

55



Sample usage of MLIPs so far

56

Predicting Li migration energies for cathode coating 
materials (MTP) 

Composition MTP
𝑬𝒂 (eV)

Experimental 
𝑬𝒂 (eV)

Li3Sc2(PO4)3 0.62 ± 0.04 0.65

Li2B6O9F2 0.79 ± 0.10 0.92

LiCl 1.11 ± 0.13 0.83
Wang et al., Chem. Mater. 32, 3741–52 (2020)

Effect of defects on deformation and 
failure in Mg (ANNP)

Stricker et al., Phys Rev Mater 4, 103602 (2020) 
Simulations of glassy Li4P2O7 (NequIP)

Batzner et al., Nat. Commun. 13, 2453 (2022)

Growth mechanism in amorphous carbon 
(GAP)

Caro et al., Phys. Rev. Lett. 120, 166101 (2018)



Hands—on session?

57



Build MTP and NequIP

58

https://gitlab.com/ashapeev/mlip-2 https://github.com/mir-group/nequip.git

https://gitlab.com/ashapeev/mlip-2
https://github.com/mir-group/nequip.git


Conclusions and some thoughts to chew
• Designing better materials critical for performance 

improvement in several applications
• Computations + ML can significantly accelerate 

materials design

• Different ways to use ML (or precursors to ML)
• Regressions (or classifications): predict properties 

using experimental/calculated properties
• Coarse graining: model larger/longer phenomena on 

a fixed lattice
• Interatomic potentials: model larger/longer 

phenomena on a dynamic lattice

• Materials science is a data-limited domain
• Garbage in = Garbage out; data normalization
• What model to choose? Simple models are usually 

better
• Choose features carefully: physically intuitive?
• Don’t do ML just because you can (hammer doesn’t 

beget a nail)
• Construct models with care: overfitting, lack of 

transferability
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