

ENGINEERING TIP:
WHEN YOU DO A TASK BY HAND,
YOU CAN TECHNICALLY SAY YOU
TRAINED A NEURAL NET TO DO IT.

Technologies, materials, and machine learning

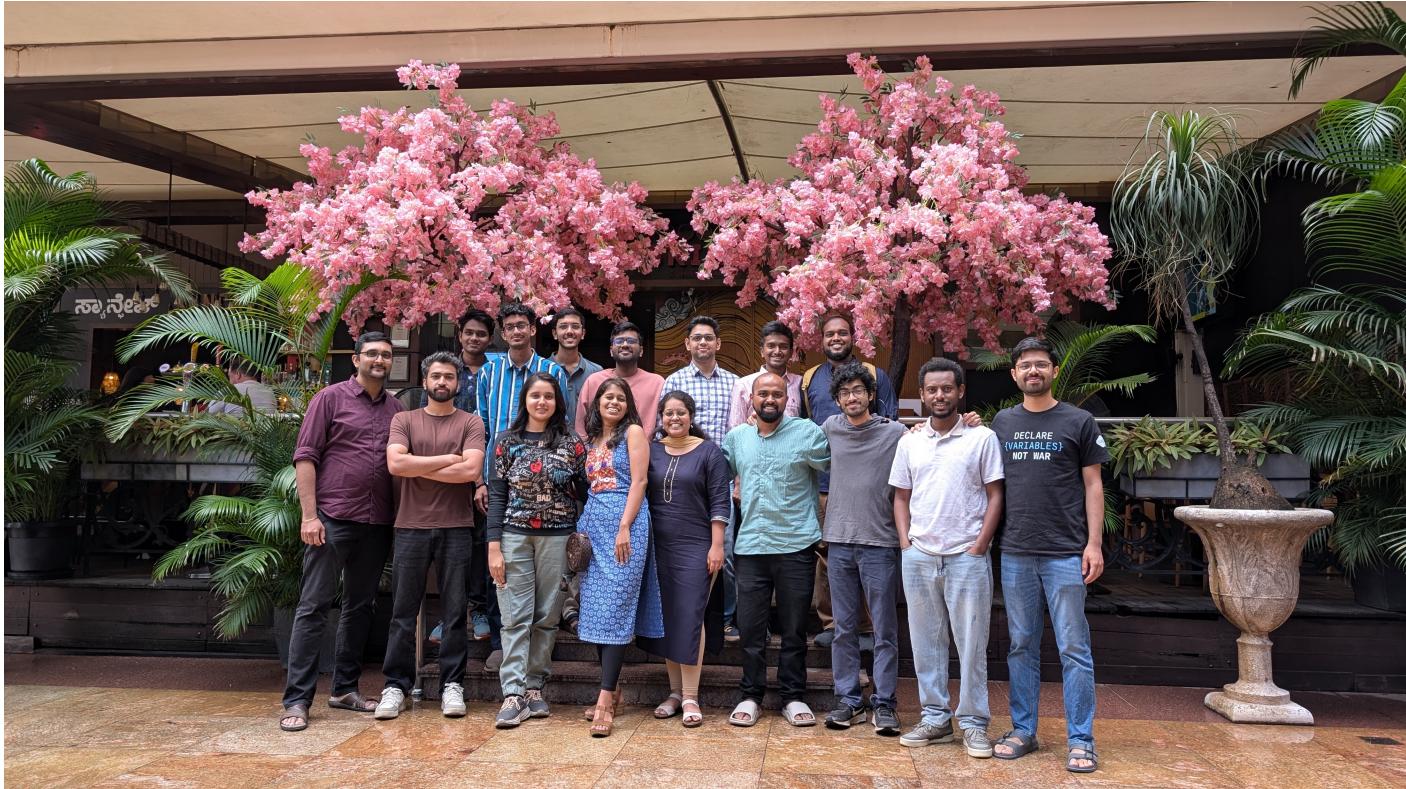
Sai Gautam Gopalakrishnan

Associate Professor, Materials Engineering, Indian Institute of Science

saigautamg@iisc.ac.in; <https://sai-mat-group.github.io>

Manohar Parrikar Vidnyan Mahotsav, Goa
18 Dec 2025

Acknowledgments



June 2025

Transfer learning of migration barriers

Param
Utkarsh
(CDAC)

IMBRS 2025 | Sai Gautam Gopalakrishnan

Archer
(UK)

Jureca
(Germany)

IGSTC
INDO-GERMAN SCIENCE AND TECHNOLOGY CENTRE

SCHAEFFLER

UKRI

TCS
TATA
CONSULTANCY
SERVICES

CiNSERB
DIA

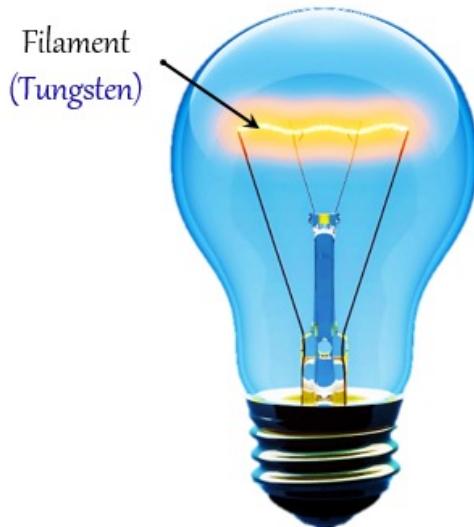
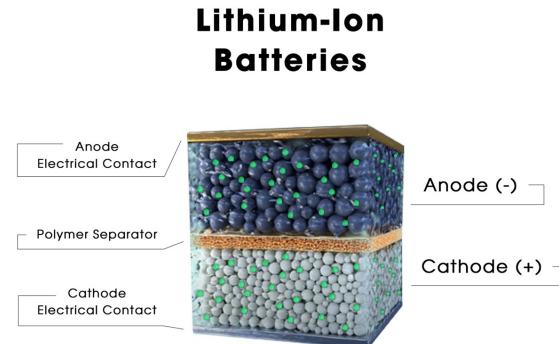
Fugaku
(Japan)

SERC (IISc)

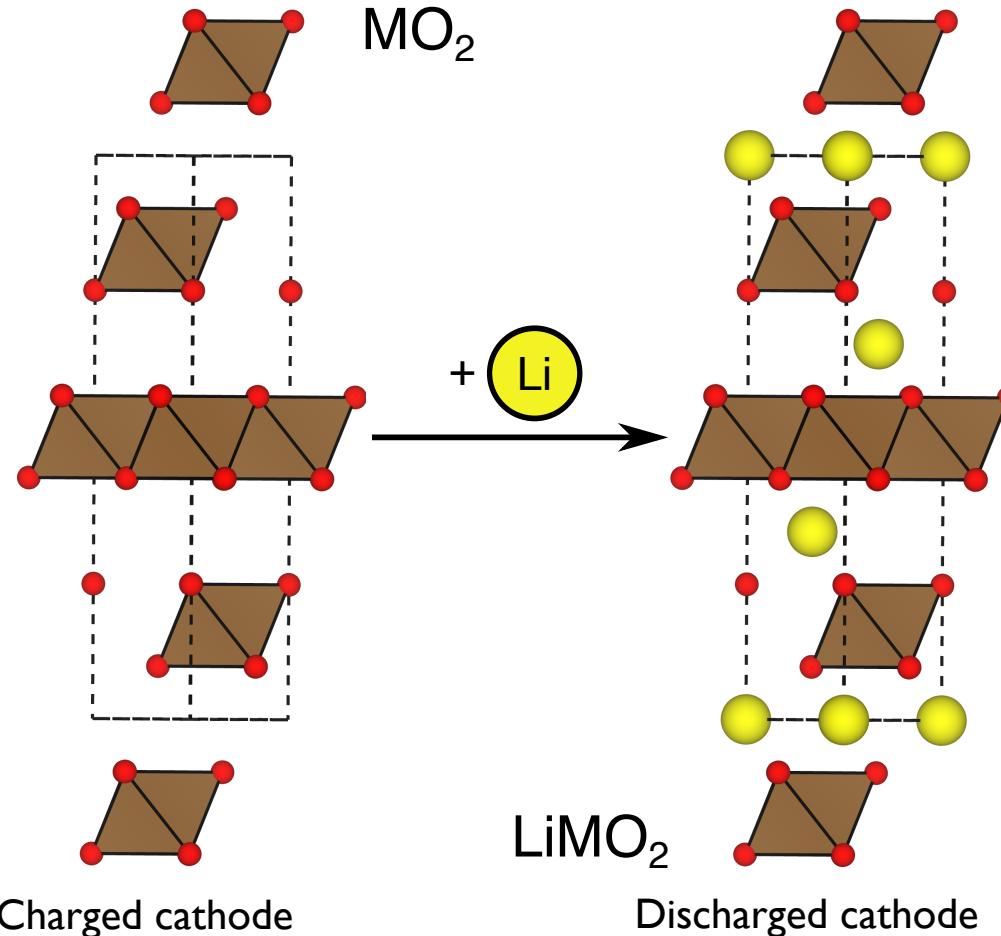
THE
ROYAL
SOCIETY

What are materials?

- A substance, typically *solid*, intended for use for a certain (engineering) *application*
- Study of materials: *applied* field intersecting physics, chemistry, and biology with some applied math



Voltage, capacity, and rate in Li-ion batteries



Rate: how fast can Li move (or diffuse) within electrode?

$$\Delta G_{\text{intercalation}} = G_{\text{LiMO}_2} - G_{\text{MO}_2} - G_{\text{Li}}$$

Nernst Equation

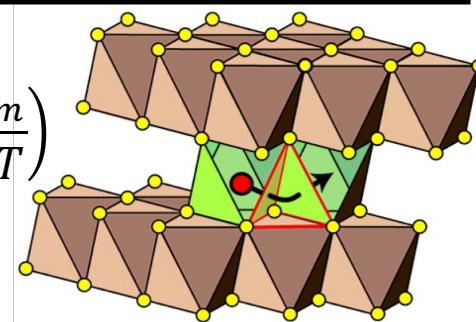
$$V = -\frac{\Delta G_{\text{intercalation}}}{nF}$$

(Do similar process for anode, take V difference!)

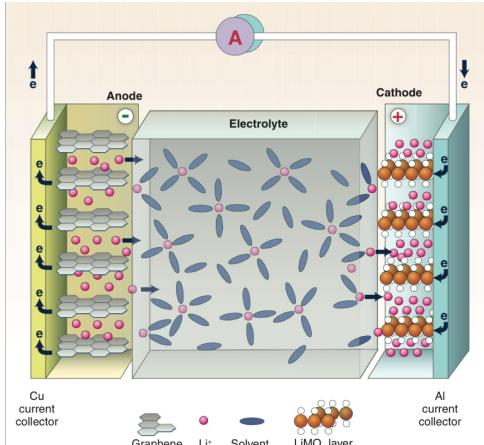
1 Li moved = 1 electron stored

$$\text{Capacity} \propto \frac{\# \text{ Li moved}}{\# \text{ 'Framework' atoms}}$$

$$\text{Rate} \propto \exp\left(-\frac{E_m}{RT}\right)$$



Why design materials?

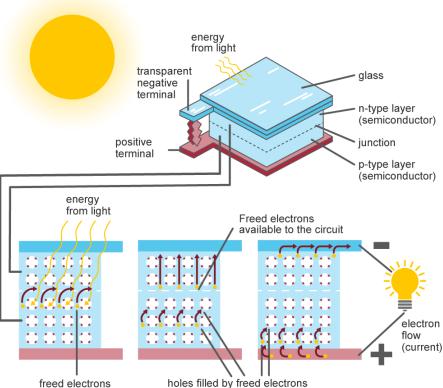


Key performance bottlenecks in key applications: governed by materials used

Energy and power density of a battery: limited by materials used as electrodes (and at times, electrolytes)

Key material properties: stability, ionic mobility, reaction energies

Usage of better materials (with better properties) → better performance



Efficiency of a photovoltaic: choice of semiconductor used as the light absorber

Key material properties: band gap, stability, resistance to point defects

Materials are crucial for different technologies

Energy

- Batteries
- Photovoltaics
- Renewable fuels
- Sensors
- Nuclear fission and fusion

Healthcare

- Drug delivery
- Hip/knee joints
- Water desalination
- Biomedical devices
- Tissue engineering

Infrastructure and automotive

- Alloys for automobiles
- Superalloys for aerospace
- Steel for bridges, flyovers, skyscrapers
- Armor (defense applications)
- Stealth systems (Radars)

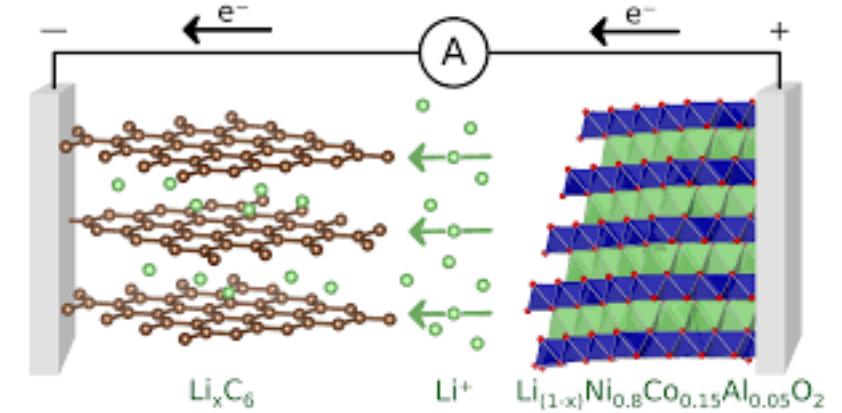
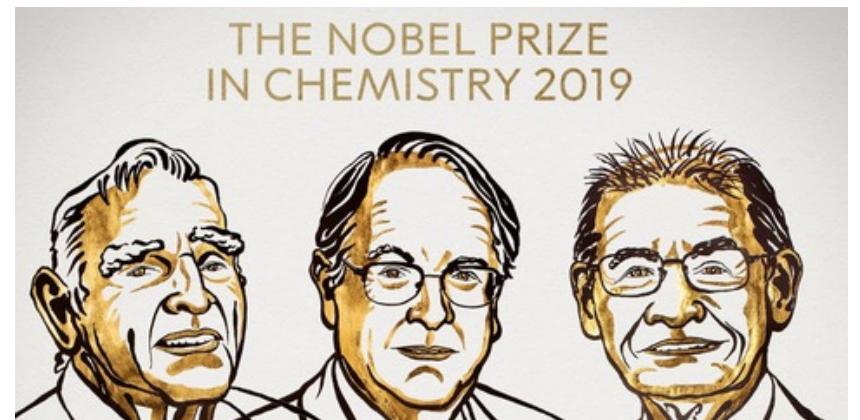
Breakthrough in materials is the key enabler or bottleneck of several technologies

Everyday applications, internet of things

- Flexible electronics
- Modern sports equipment
- Smaller electronics, nano-chips
- Biodegradable plastics
- Water-repellents

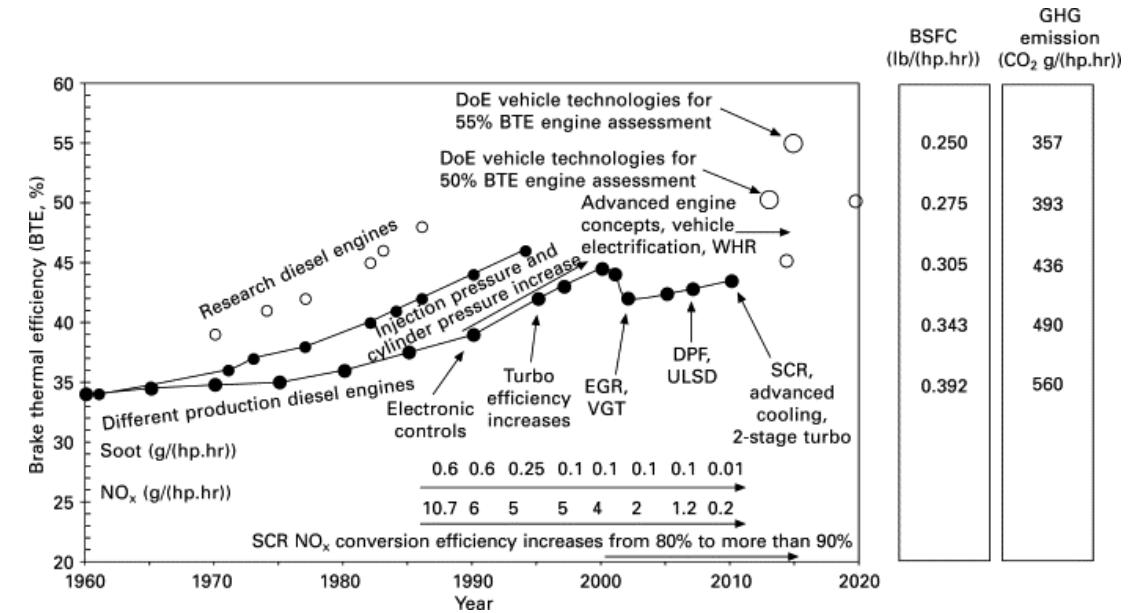
Typical life of a material scientist/engineer

- Identify novel materials
 - And applications for them



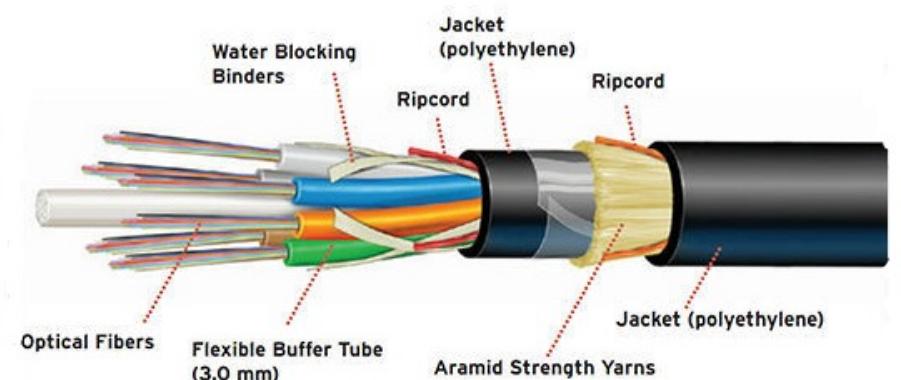
Typical life of a material scientist/engineer

- Identify novel materials
 - And applications for them
- Improve existing materials
 - Performance, cost, sustainability



Typical life of a material scientist/engineer

- Identify novel materials
 - And applications for them
- Improve existing materials
 - Performance, cost, sustainability
- Develop better ways to manufacture
 - And “process” or “assemble” components



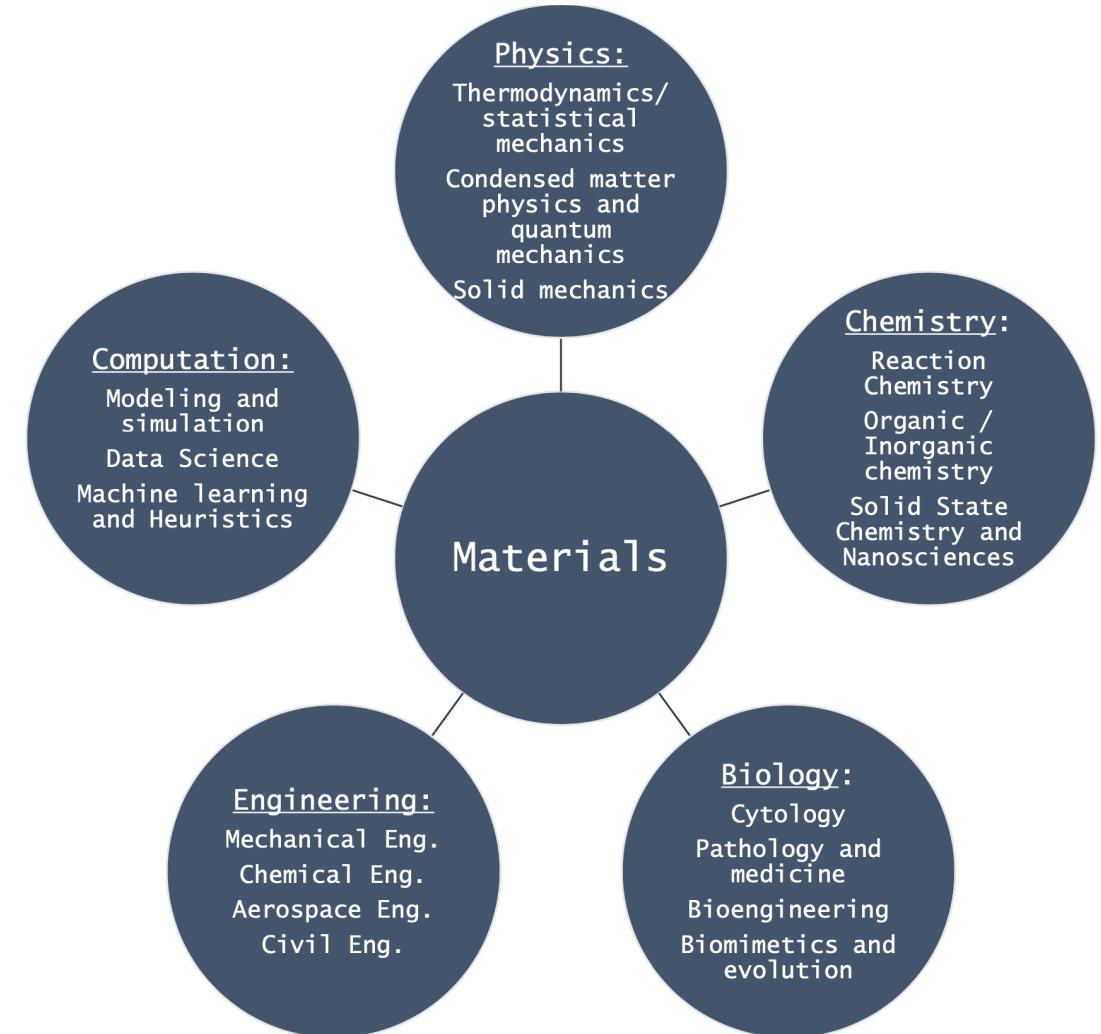
Typical life of a material scientist/engineer

- Identify novel materials
 - And applications for them
- Improve existing materials
 - Performance, cost, sustainability
- Develop better ways to manufacture
 - And “process” or “assemble” components
- Prevent or postpone failure
 - Understand mechanisms of failure

Materials is interdisciplinary

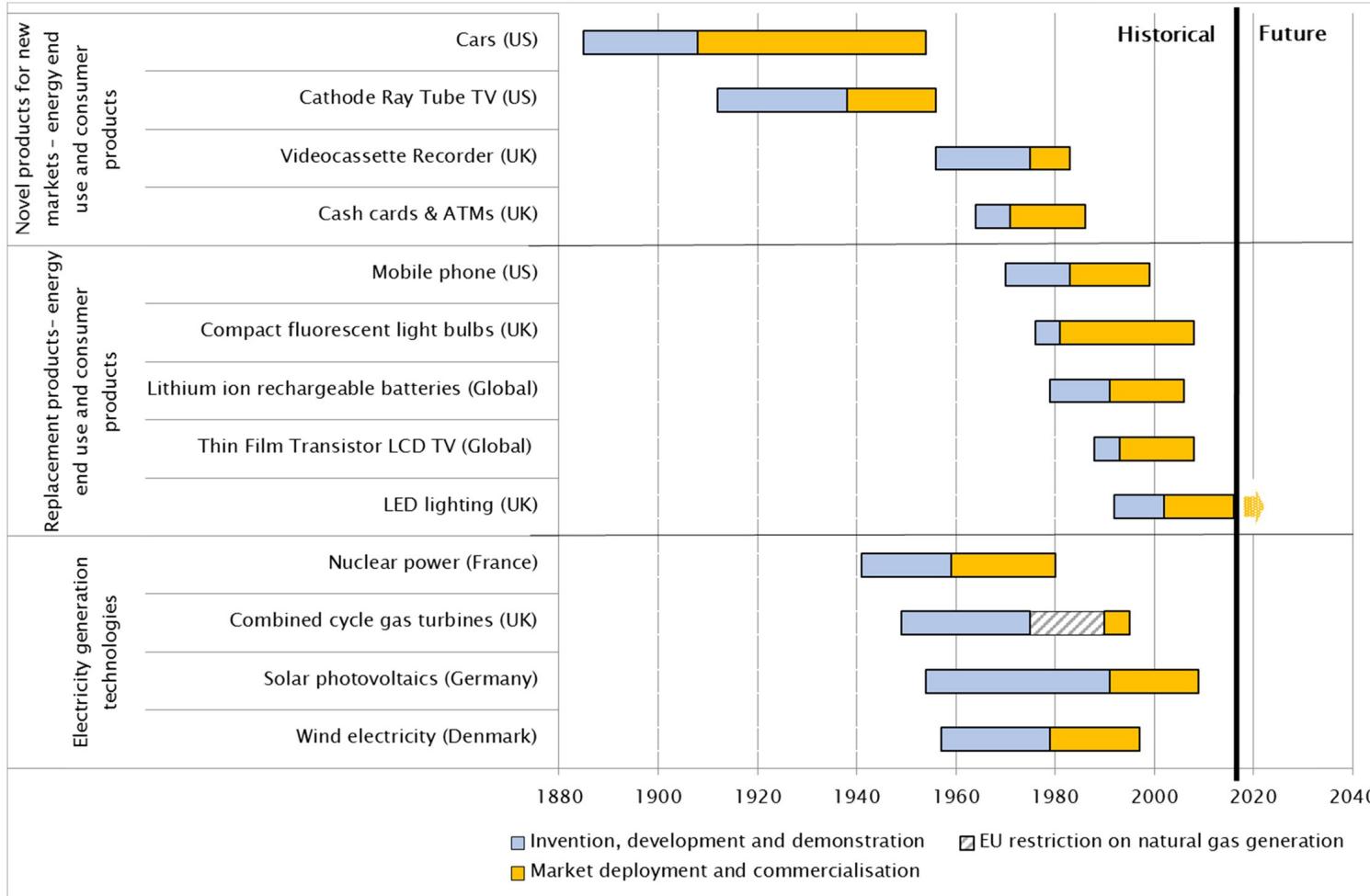
Bridging atoms to rockets,
picoseconds to years

Most science in an engineering
discipline, most engineering in a
science discipline



Where does machine learning come in?

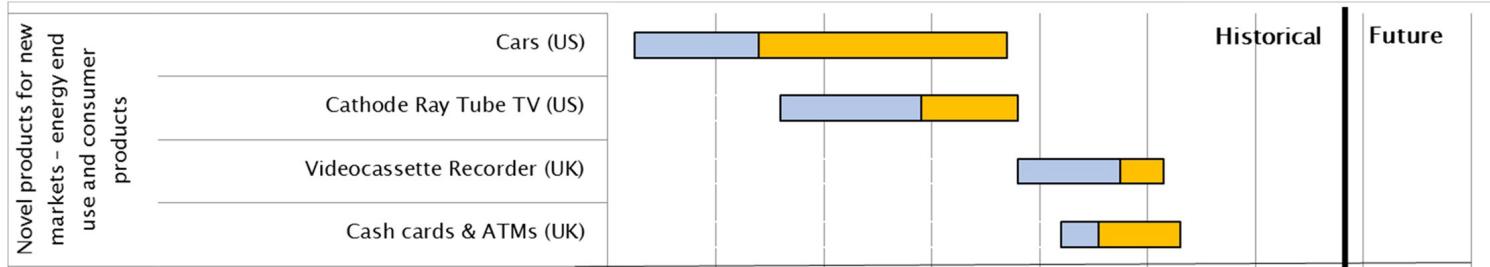
Why use machine learning (ML) in materials?



Technological innovation and deployment is a 'slow' process: often limited by materials

Innovation is particularly slow in energy sector!

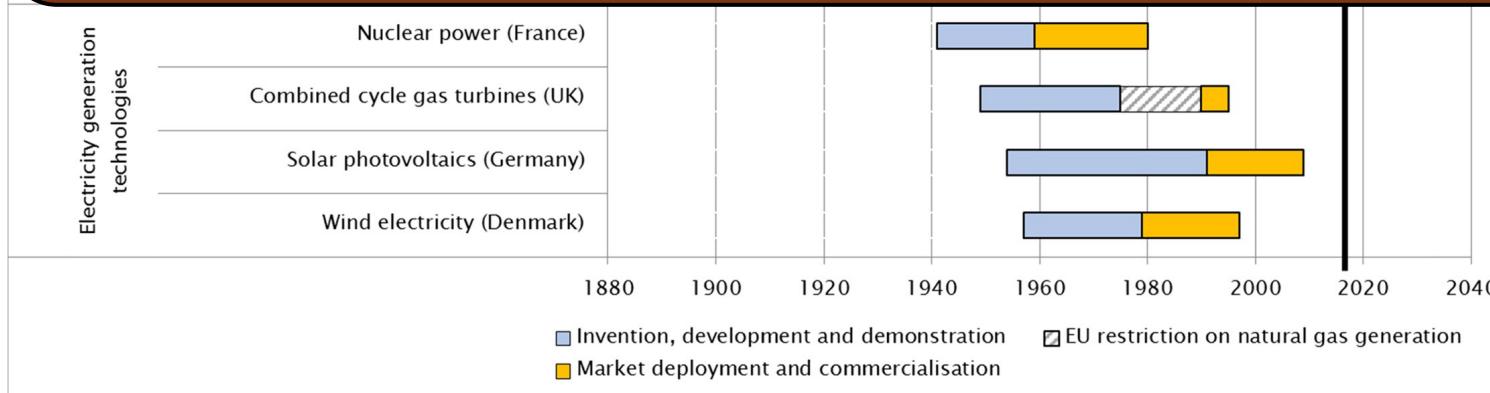
Why use machine learning (ML) in materials?



Technological innovation and deployment is a 'slow' process: often limited by materials

Faster ways of discovering new/better materials → faster innovation cycles

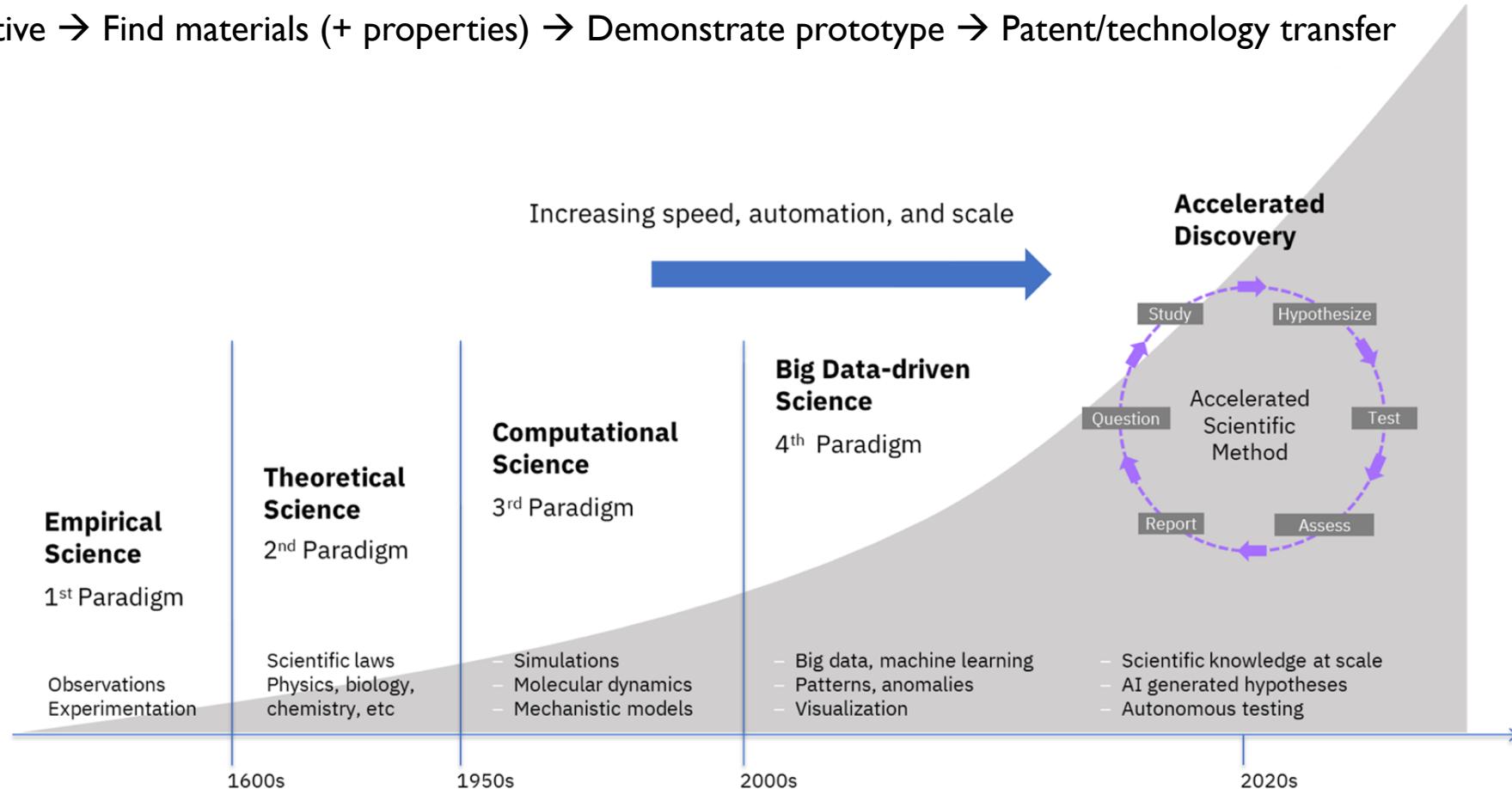
Machine learning → “model” materials/“predict” properties faster



Innovation is particularly slow in energy sector!

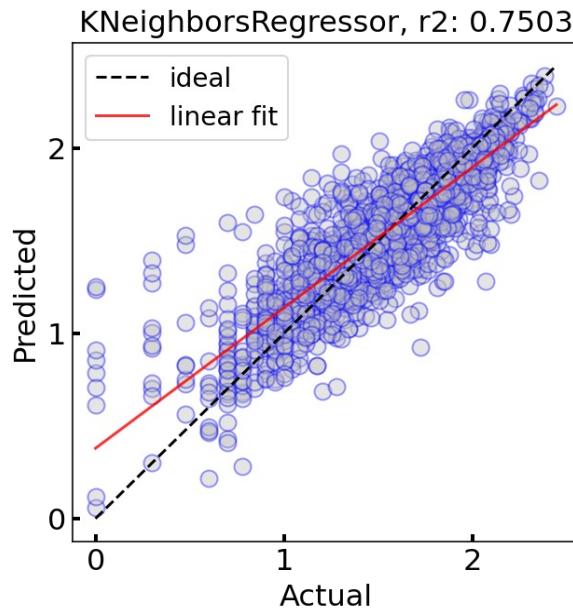
Fourth paradigm of discovery

State objective → Find materials (+ properties) → Demonstrate prototype → Patent/technology transfer

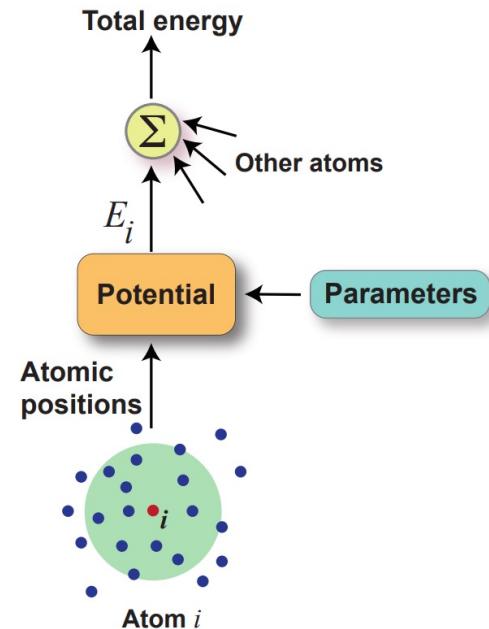


Types of ML in materials

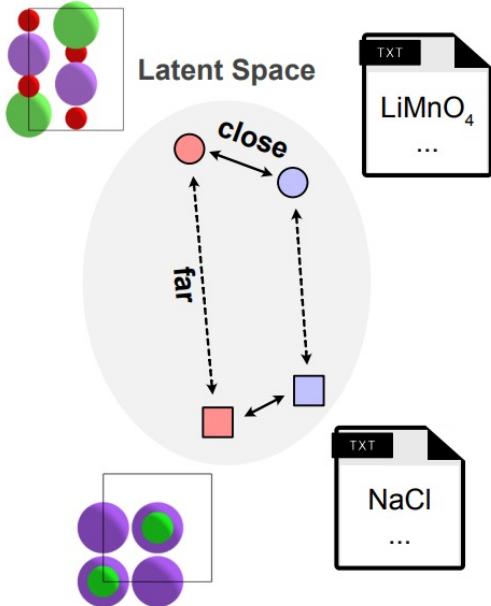
Regressions: make property predictions better with 'simple' inputs
 (also classifications)



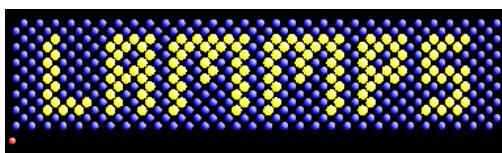
Interatomic potentials: describe potential energy surface accurately



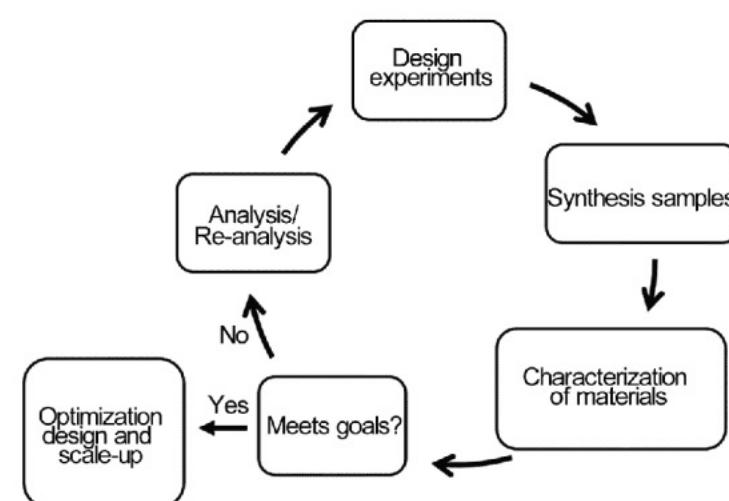
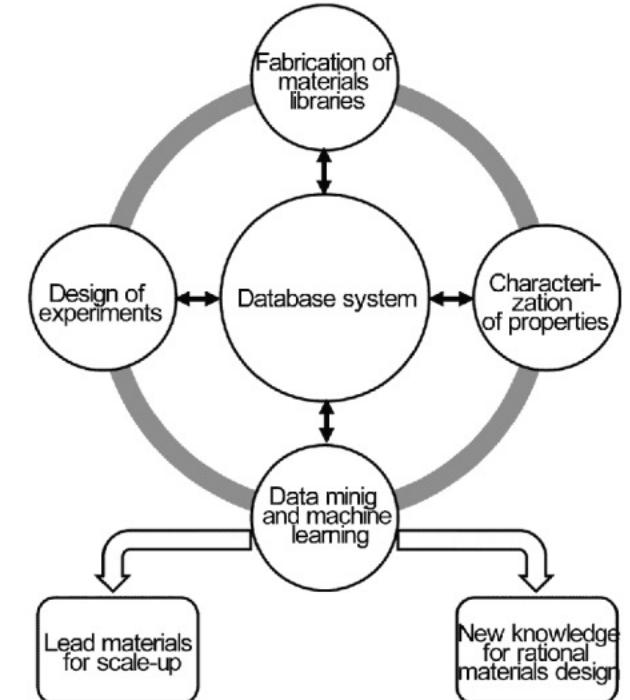
Advanced models:
 Diffusion (generative) models, language models, transfer learning



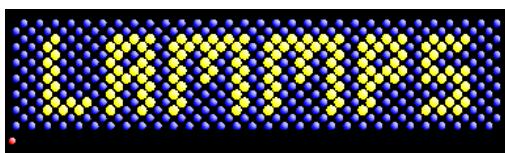
Where does the data come from?



Data organization: python/API
ML: python



Where does the data come from?



Data organization: python/API
ML: python

Home Search

Home Benchmark Info Full Benchmark Data How To Use Leaderboards Per Task Reference

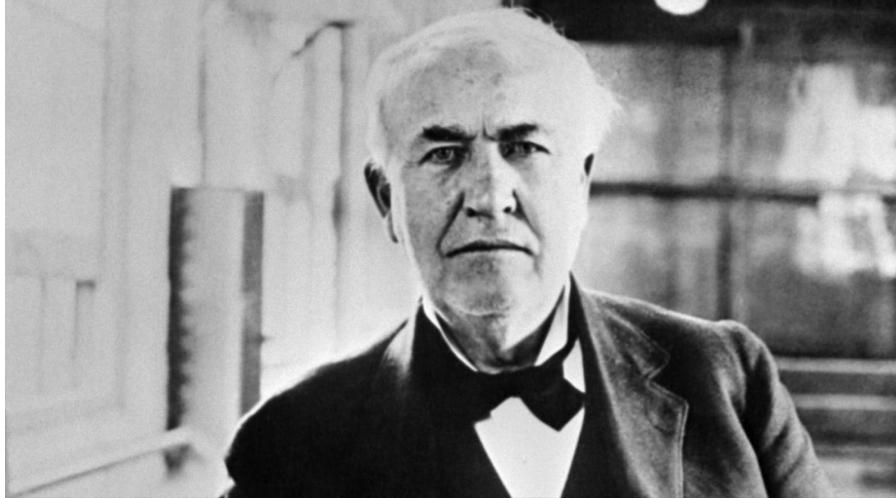
Home Leaderboard-Property: General Purpose Algorithms on matbench_v0.1

Find more information about this benchmark on the [benchmark info page](#)

Task name	Samples	Algorithm	Verified MAE (unit) or ROCAUC	Notes
matbench_steels	312	MODNet (v0.1.12)	87.7627 (MPa)	
matbench_jdft2d	636	MODNet (v0.1.12)	33.1918 (meV/atom)	
matbench_phonons	1,265	MegNet (kgcnn v2.1.0)	28.7606 (cm ⁻¹)	structure required
matbench_expt_gap	4,604	MODNet (v0.1.12)	0.3327 (eV)	
matbench_dielectric	4,784	MODNet (v0.1.12)	0.2711 (unitless)	
matbench_expt_is_metal	4,921	AMMExpress v2020	0.9209	
matbench_glass	5,680	MODNet (v0.1.12)	0.9603	
matbench_log_gvrh	10,987	coGN	0.0670 (log10(GPa))	structure required
matbench_log_kvrh	10,987	coGN	0.0491 (log10(GPa))	structure required
matbench_perovskites	18,928	coGN	0.0269 (eV/unit cell)	structure required
matbench_mp_gap	106,113	coGN	0.1559 (eV)	structure required
matbench_mp_is_metal	106,113	CGCNN v2019	0.9520	structure required
matbench_mp_e_form	132,752	coGN	0.0170 (eV/atom)	structure required

<https://matbench.materialsproject.org/>

How do we design materials?



Trial and error of candidates in a lab

Density functional theory: (Approximately) predict material properties

Simulate and identify candidates
(on a transparent touch screen preferably)

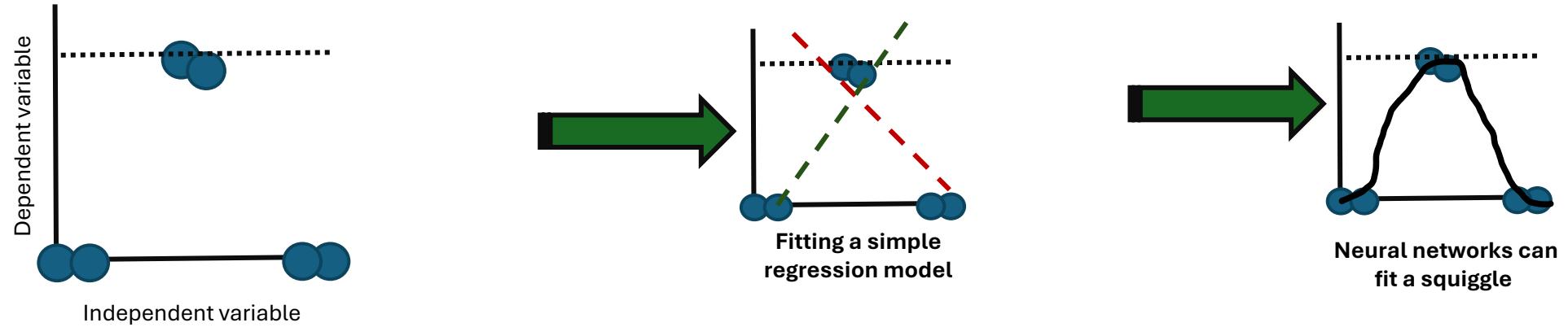
Machine learning: learn from predictions to make better predictions

(Modern) ML in materials and use cases

Property predictors, interatomic potentials, advanced models

Neural networks (NNs)

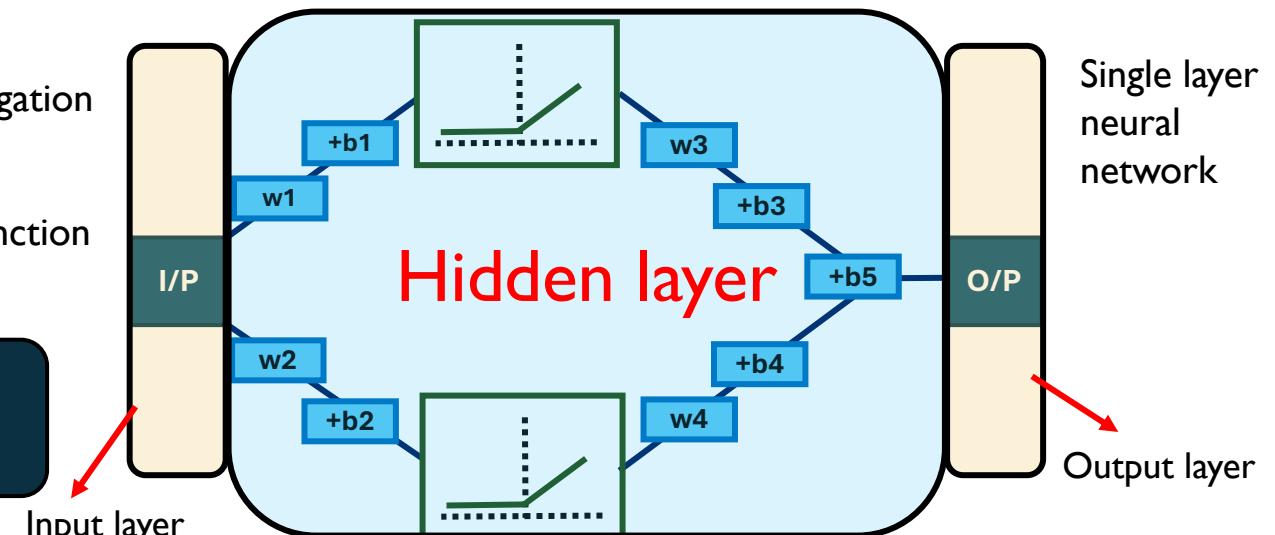
Suppose we want to fit the following data



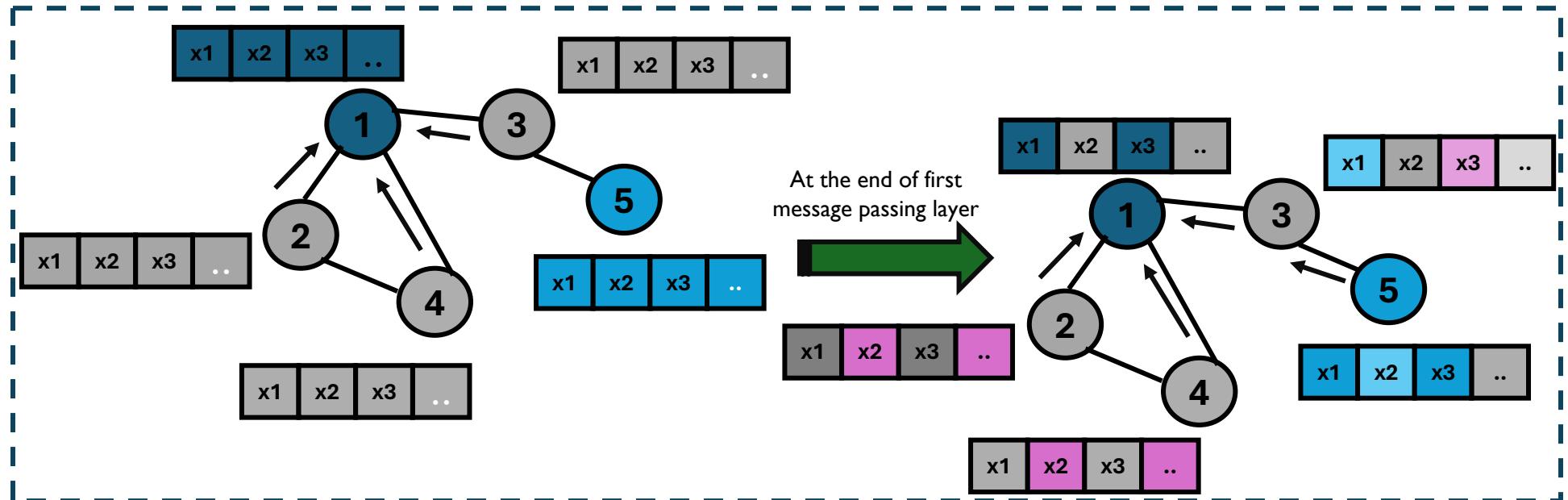
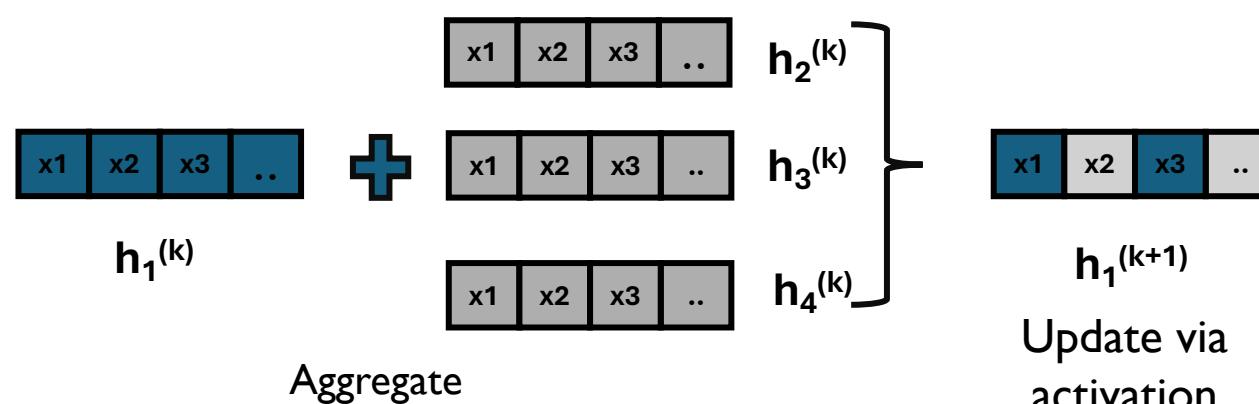
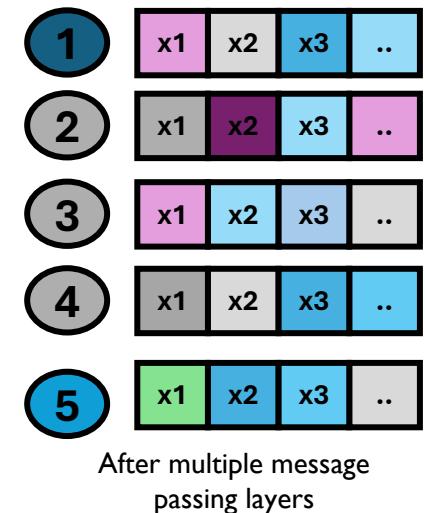
Optimized biases and weights are obtained via back propagation

Weights and biases determine the part of the activation function that will contribute to the squiggle

Several types of NNs exist
 Graph NNs particularly relevant for materials



Graph neural networks



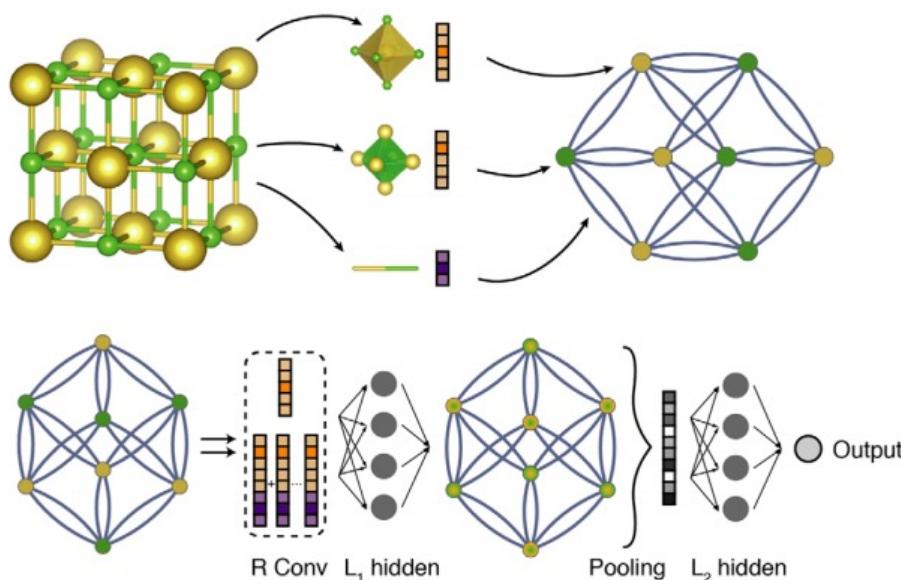
Predicting material properties (scratch)

PHYSICAL REVIEW LETTERS 120, 145301 (2018)

Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

Tian Xie and Jeffrey C. Grossman

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA



Properties : Formation energy, band gap, Fermi energy, bulk and shear moduli, and Poisson's ratio

Database: 10⁴ DFT-calculated datapoints from MP

Model: Crystal Graph convolutional neural network (CGCNN)

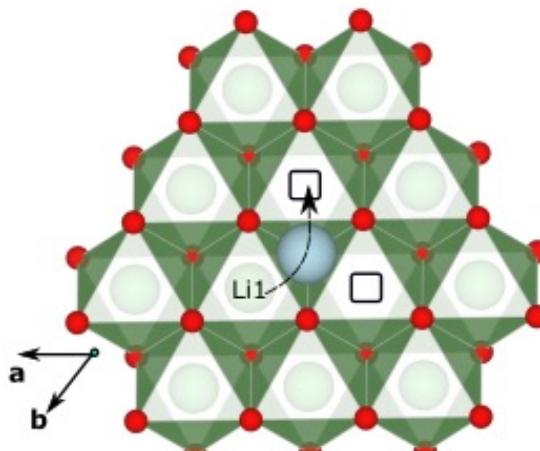
Performance:

- Formation energy: 0.039 eV/atom
- Band gap: 0.388 eV
- Fermi energy: 0.363 eV
- Elastic moduli: ~1-2 GPa
- Poisson's ratio: 0.03
- Identified 228 'synthesizable' perovskites out of 18928 in the training database

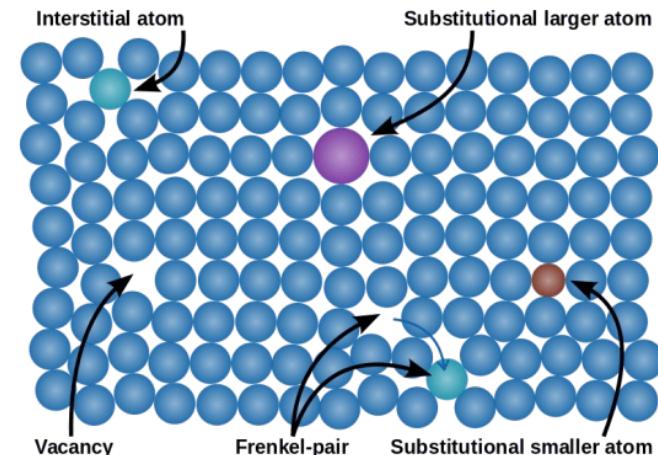
Predicting material properties (transfer learning)

Several key material properties that govern performance in applications have limited data

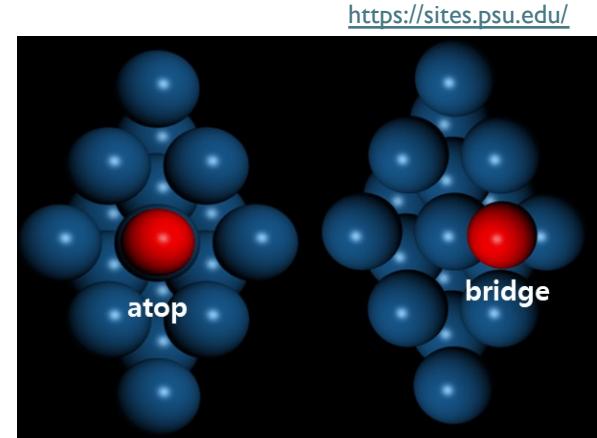
- ‘Small’ datasets ($< 10^4$ datapoints)
 - Ionic mobilities, defect formation energies, adsorption energies,...
- Limits application of deep learning (DL) frameworks



Devi et al., *npj Comput. Mater.* 2022



<https://www.differencebetween.com/difference-between-point-defect-and-line-defect/>

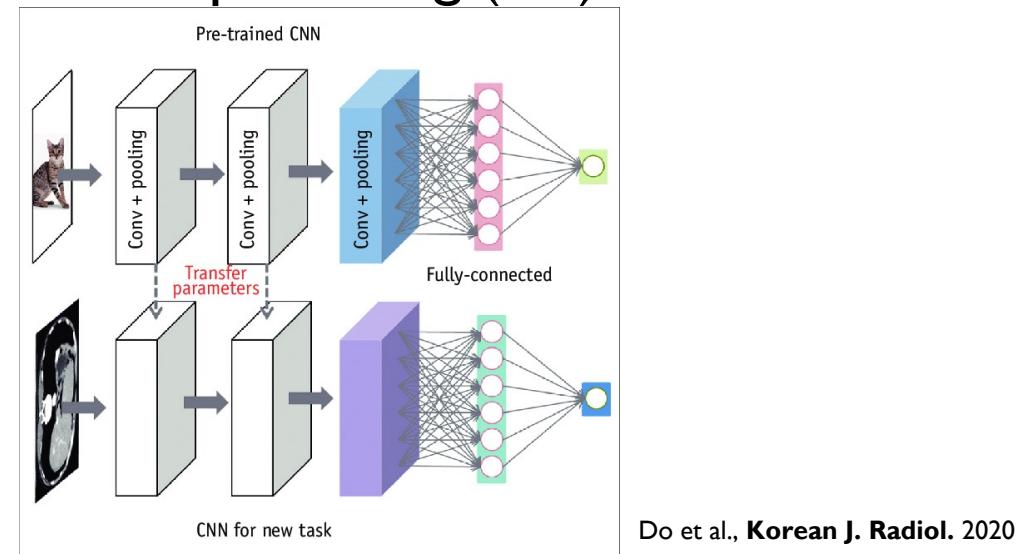


<https://sites.psu.edu/>

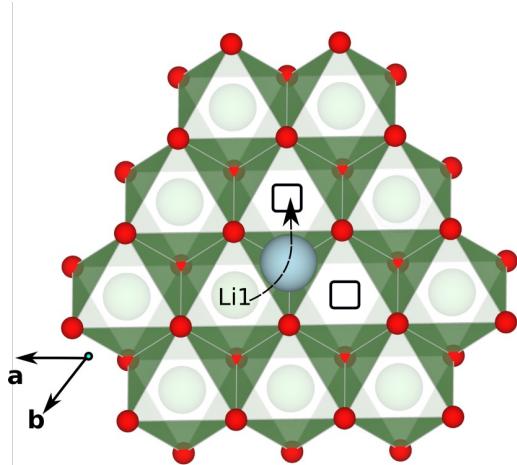
Predicting material properties (transfer learning)

Several key material properties that govern performance in applications have limited data

- ‘Small’ datasets ($< 10^4$ datapoints)
 - Ionic mobilities, defect formation energies, adsorption energies,...
- Limits application of deep learning (DL) frameworks

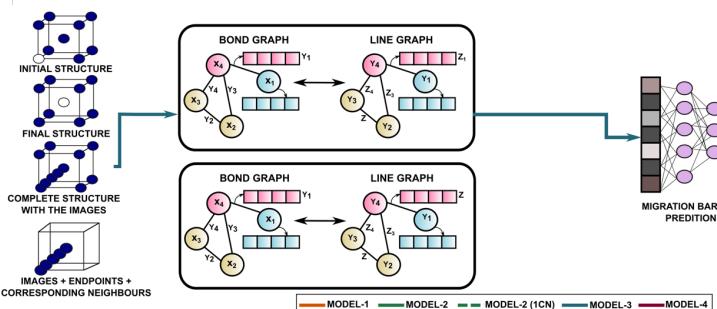
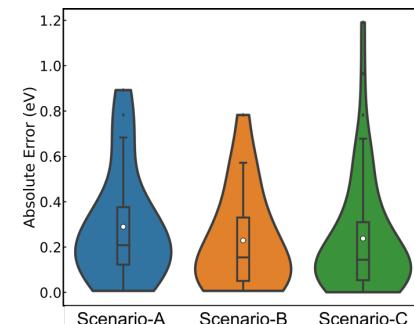


Transfer learning: battery rate performance



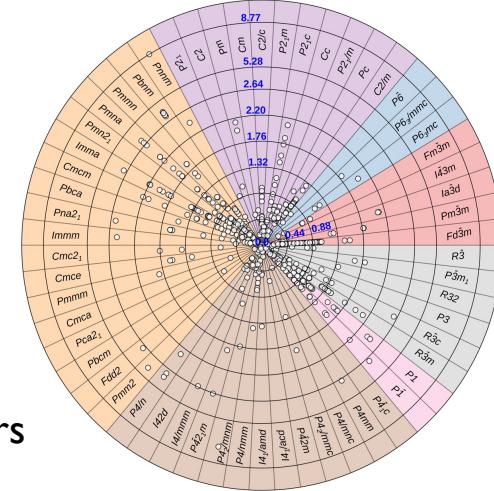
Migration barriers → determine rate performance in batteries

Exponential control on diffusivity

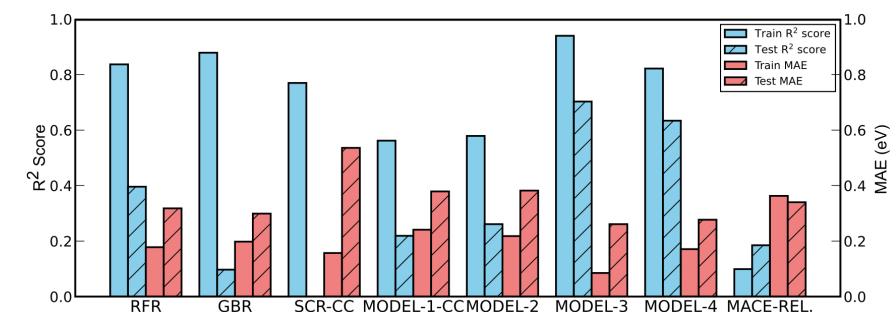


Build a model (graph based architecture)

Excellent generalization and classification abilities



Compile a dataset on calculated barriers

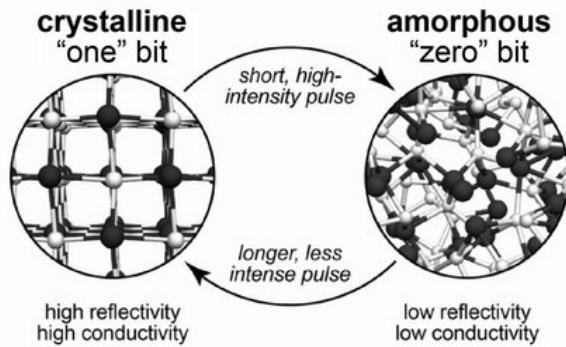


MODEL-3 (transfer learned) is the best!

Graph networks and interatomic potentials

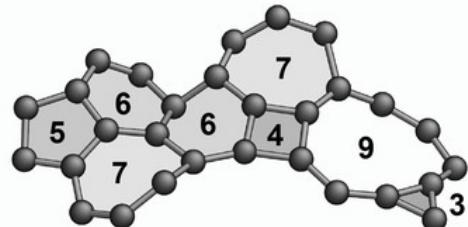
Application challenge:

Understand phase-change materials to develop improved devices



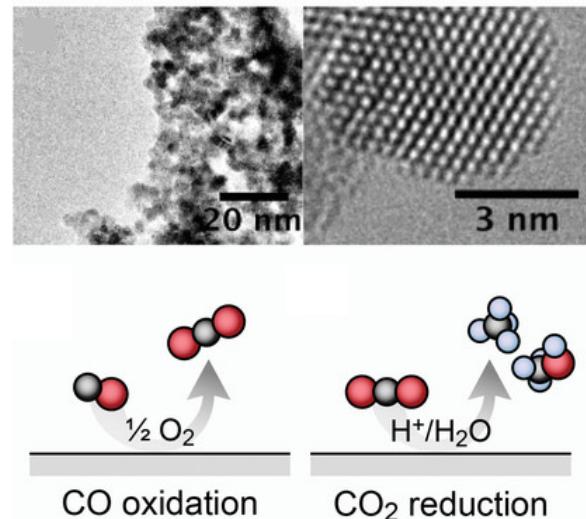
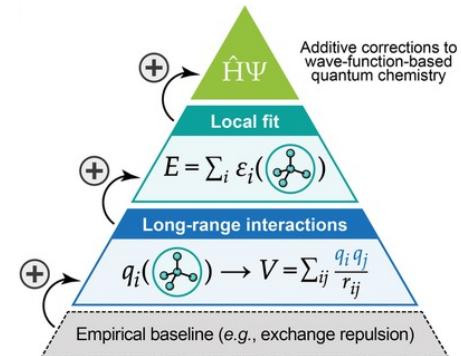
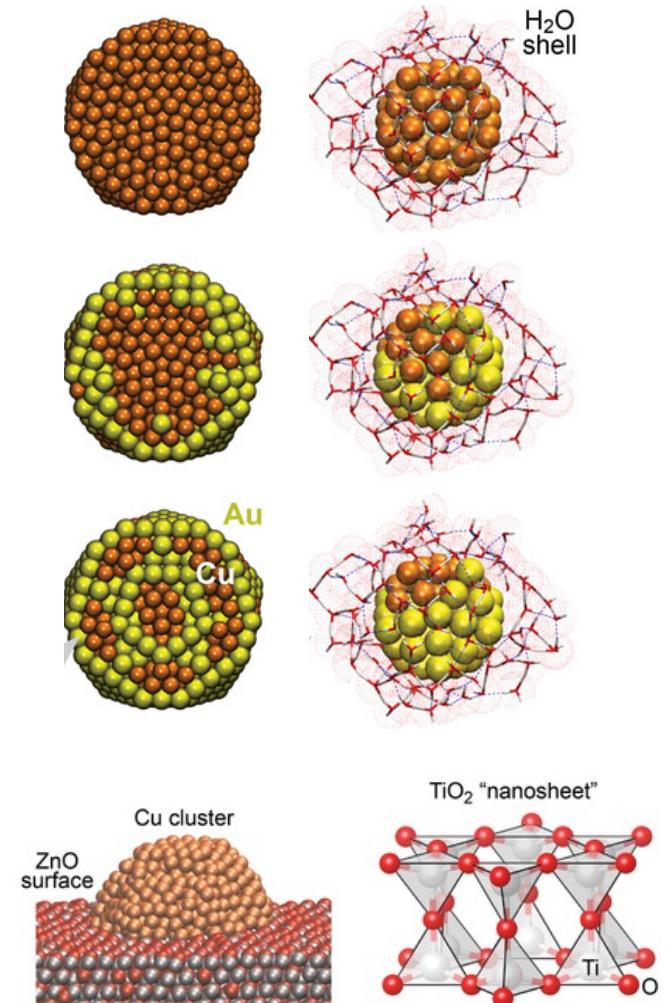
Application challenge:

Understand and optimize carbon materials for coatings or electrodes

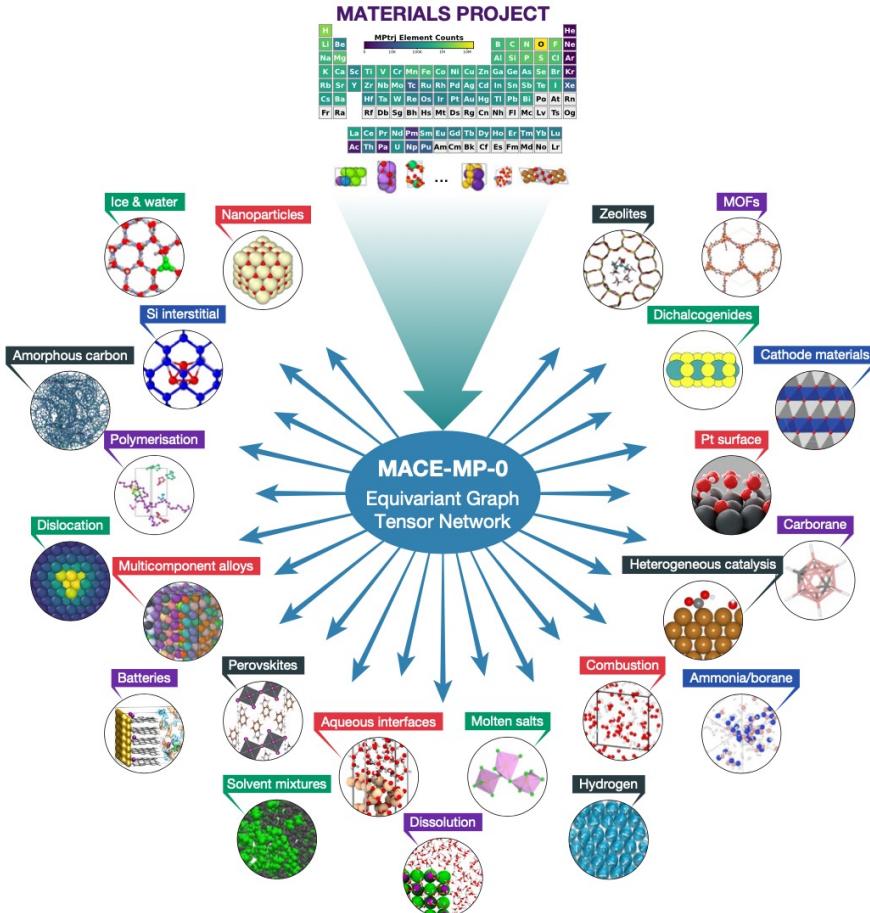


Application challenge:

Clarify atomic structure of nanoparticles and its role in catalytic mechanisms

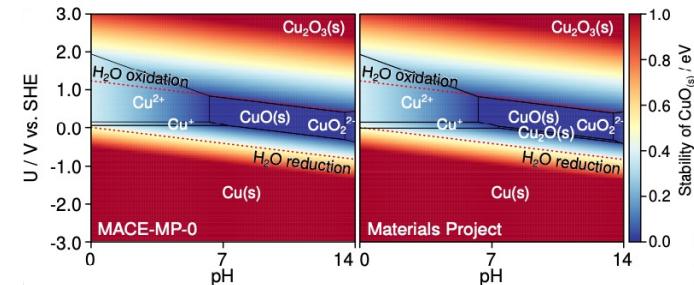


Foundational interatomic potentials



Trained on Materials Project trajectory dataset (~1.5M structures)

- Stable performance on 30 different property predictions/application areas
- Stable dynamics in solids, liquids, and gases
- GPU; limited system size

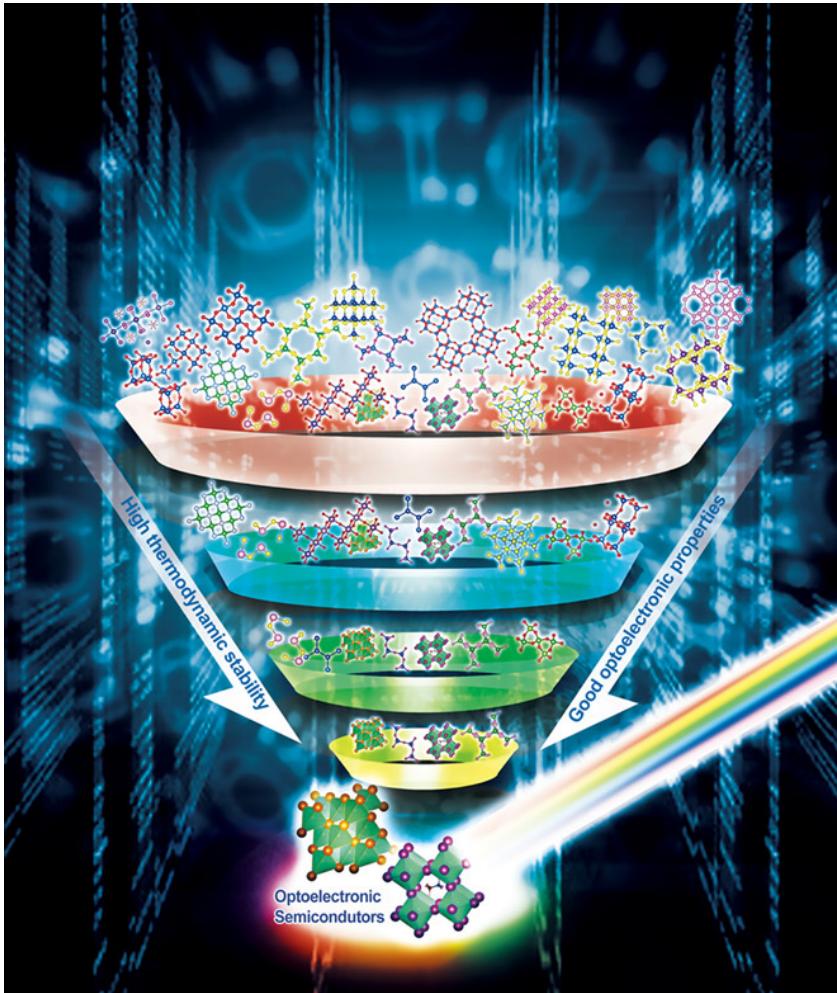


Many more to come...

Model	$F1 \uparrow$	$DAF \uparrow$	$Prec \uparrow$	$Acc \uparrow$	$MAE \downarrow$	$R^2 \uparrow$	$K_{SRME} \downarrow$	Training Set
eqV2 S DeNS	0.815	5.042	0.771	0.941	0.036	0.788	1.665	146k (1.58M) (MPtrj)
ORB MPtrj	0.765	4.702	0.719	0.922	0.045	0.756	1.725	146k (1.58M) (MPtrj)
SevenNet-13i5	0.76	4.629	0.708	0.92	0.044	0.776	0.55	146k (1.58M) (MPtrj)
SevenNet-0	0.724	4.252	0.65	0.904	0.048	0.75	0.767	146k (1.58M) (MPtrj)
GRACE-2L (r6)	0.691	4.163	0.636	0.896	0.052	0.741	0.525	146k (1.58M) (MPtrj)
MACE-MP-0	0.669	3.777	0.577	0.878	0.057	0.697	0.647	146k (1.58M) (MPtrj)
CHGNet	0.613	3.361	0.514	0.851	0.063	0.689	1.717	146k (1.58M) (MPtrj)
M3GNet	0.569	2.882	0.441	0.813	0.075	0.585	1.412	62.8k (188k) (MPF)

<https://matbench-discovery.materialsproject.org/>

Graph networks and inverse material design

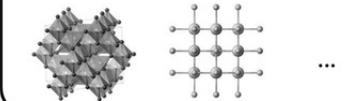
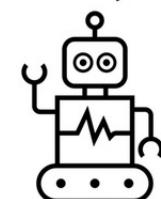


<https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1489>

Property → Structure

I WANT A MATERIAL:
1. STABLE
2. HARD

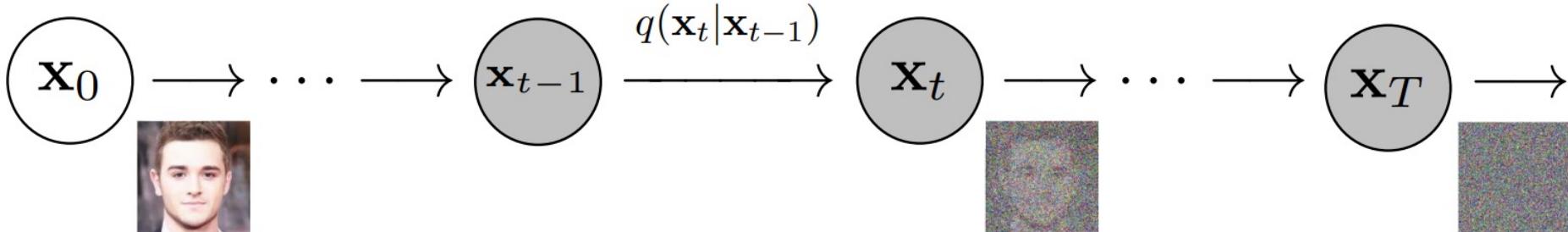
HERE ARE SOME POSSIBILITIES



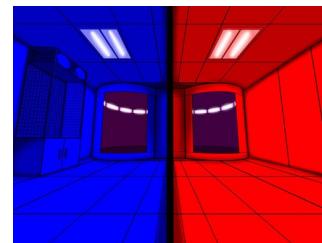
<https://news.mit.edu/2022/new-way-perform-general-inverse-design-high-accuracy-0118>

Use diffusion for structure generation

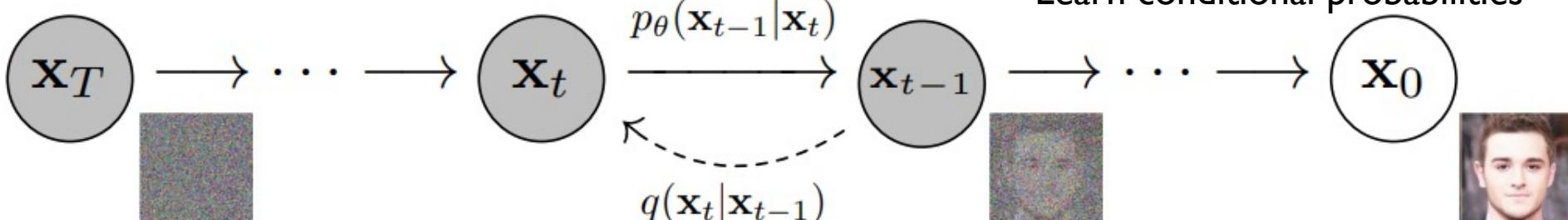
Forward diffusion



Gaussian noise added in a Markov chain



Learn conditional probabilities

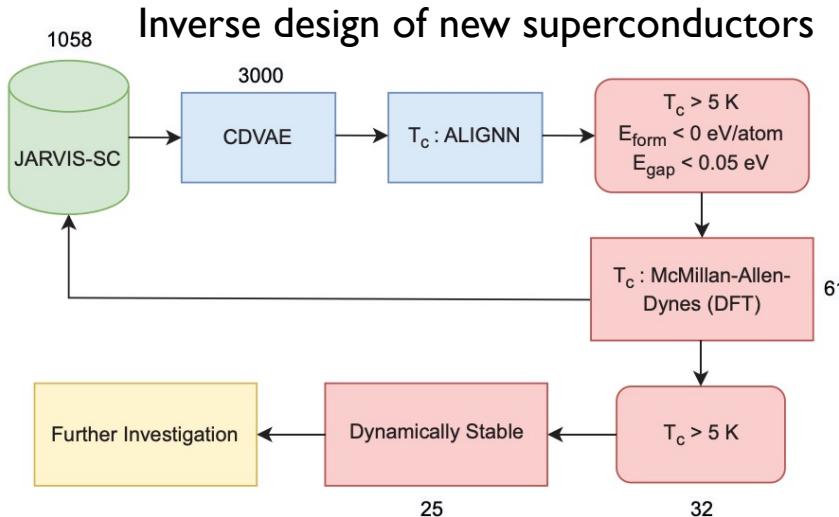
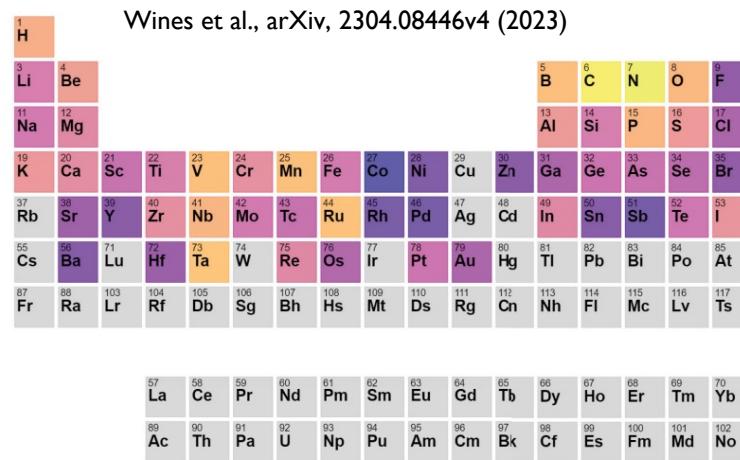


Reverse diffusion

<https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction>

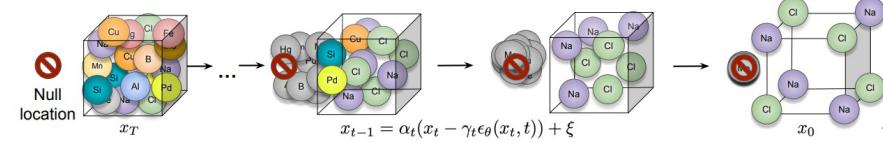
<https://medium.com/@luisfelipechary/my-experience-with-diffusion-super-resolution-3386b6574696>

Examples of generative models



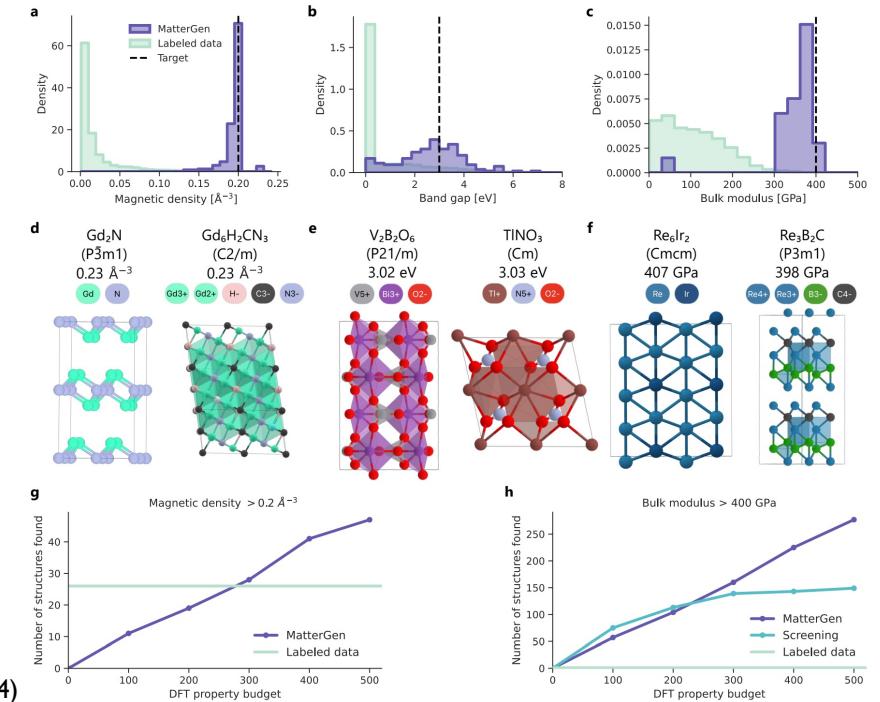
Zeni et al., arXiv, 2312.03687v2 (2024)

UniMat + Diffusion (Google Deepmind)



Yang et al., arXiv, 2311.09235v2 (2023)

MatterGen (Microsoft)



Conclusions

- Designing better materials critical for performance improvement in several applications
 - Computations + ML can significantly accelerate materials design
- Different ways to use ML
 - Property predictions, interatomic potentials, structure generation
- Materials science is a data-limited domain
 - Garbage in = Garbage out; data normalization
 - Real vs. synthetic data
 - What model to choose? Simple models are usually better
 - 'Real' success stories: still few, possibly in development
 - Lots of ongoing work: exciting field!
- General advice
 - Don't do ML just because you can
 - Construct models with care: overfitting, lack of transferability
 - Test and validate, validate and test, and ...

