OH, HEY, YOU ORGANIZED
OUR PHOTO ARCHIVE!

YEAH, T TRANED A NEURAL
NET TO SORT THE UNLABELED
PHOTOS INTO CATEGORIES.

WHOA! NICE LIORK! /

i

ENGINEERING TiP:
WHEN YOU DO A TASK BY HAND
YoU CAN TECHNICALLY SAY YOU
TRANED A NEURAL NET To DO IT
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What are materials?

* A substance, typically solid, intended for use for a certain (engineering)
application

* Study of materials: applied field intersecting physics, chemistry, and
biology with some applied math Lithium-lon

Batteries
Filament :
Tungsten)

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 3




Voltage, capacity, and rate in Li-ion batteries

AGintercalation = GLiM02 - GM02 — Gy

Nernst Equation

AGinte‘rcalation
nk

(Do similar process for anode, take V difference!)

| Li moved = | electron stored

# Li moved

Capacity «

# ‘Framework’ atoms

A NI

E
. m
Charged cathode Discharged cathode Rate x exp (— gy g
RT EAV
Rate: how fast can Li move (or diffuse) within electrode!? ‘ e, P
Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan ' ‘
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Why design materials?

Key performance bottlenecks in key applications: governed by materials used

Energy and power density of a battery: limited by materials used as electrodes (and at times,

electrolytes)

Key material properties: stability, ionic mobility, reaction energies

>0 O
ne Li*  Solvent LiMO, layer
molecule structure

Usage of better materials (with better properties) = better performance

Inside a photovoltaic cell

energy
from fight

Efficiency of a photovoltaic: choice of semiconductor used as the light absorber

Key material properties: band gap, stability, resistance to point defects

freed electrons holes filled by freed electrons

Source: U.S. Energy Information Administration

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan



Materials are crucial for different technologies

Energy

Batteries

Photovoltaics

Renewable fuels

Sensors

Nuclear fission and fusion

Infrastructure and
automotive

Alloys for automobiles
Superalloys for aerospace
Steel for bridges, flyovers,
skyscrapers

Armor (defense applications)
Stealth systems (Radars)

Technologies, materials, and machine learning

Breakthrough in materials is the
key enabler or bottleneck of
several technologies

MPVM 2025 | Sai Gautam Gopalakrishnan

Healthcare

Drug delivery

Hip/knee joints

Water desalination
Biomedical devices
Tissue engineering

Everyday applications,
internet of things

Flexible electronics

Modern sports equipment
Smaller electronics, nano-chips
Biodegradable plastics
Water-repellents




* ldentify novel materials
* And applications for them

Li,Cs Lit Ll oNigeCog 1 6Aly 0504

THE NOBEL PRIZE
IN CHEMISTRY 2019

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 7



Typical life of a material scientist/engineer

* ldentify novel materials
* And applications for them

* Improve existing materials

* Performance, cost, sustainability

Technologies, materials, and machine learning

GHG
BSFC emission
(Ib/thp.hr)) (CO, g/(hp.hr))
60
[ DoE vehicle technologies for
r 55% BTE engine assessment
55 + . ) @) 0.250 357
[ DoE vehicle technologies for
<2 50% BTE engine assessment ™~
50t Advanced engine O q 0.275 393
= L e® O concepts, vehicle -
@ r \609‘ o 0 _electrification, WHR
z 45 + © 0.305 436
s
L r
£ 40§ T \ 0.343 490
o r o]
o b
E a5l . / Turbo uLSD SCR,
2 * d tion diese! engines  efficiency Con advanced 0392 560
] . t produc Electronic . VGT cooling,
> I pifferen |s increases
La0f controls 2-stage turbo
© I Soot (g/(hp.hr))
@ [ 0.6 0.6 0.25 0.1 0.1 0.1 0.1 0.01
[ NO, (g/(hp.hr))
251 "o 1970P 076 5 5 4 2 1202
I SCR NO, conversion efficiency increases from 80% to more than 90%
20 =
1960 1970 1980 1990 2000 2010 2020
Year
MPVM 2025 | Sai Gautam Gopalakrishnan 8



Typical life of a material

* ldentify novel materials
* And applications for them

* Improve existing materials

* Performance, cost, sustainability

* Develop better ways to manufacture

* And“process” or “assemble” components

Technologies, materials, and machine learning

scientist/engineer

.
Jacket
Water Blocking (polyethylene)
Binders Ripcord

Ripcord :

Jacket (polyethylene)

Optical Fibers  Fexiple Buffer Tube WS
(3.0 mm) Aramid Strength Yarns

MPVM 2025 | Sai Gautam Gopalakrishnan



|dentify novel materials
* And applications for them

Improve existing materials

* Performance, cost, sustainability

Develop better ways to manufacture

* And “process” or “assemble” components

Prevent or postpone failure

¢ Understand mechanisms of failure

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 10
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Materials is interdisciplinary

Bridging atoms to rockets,
picoseconds to years

Most science in an engineering
discipline, most engineering in a
science discipline

Technologies, materials, and machine learning

MPVM 2025 | Sai Gautam Gopalakrishnan

Physics:

Thermodynamics/
statistical
mechanics

Condensed matter
physics and
guantum
mechanics

olid mechanics
Chemistry:
Reaction

Computation:
Chemistry

Modeling and i
simulation Organic /
Inorganic

Data Science chemistry
Machine Tlearning Solid State

and Heuristics Chemistry and
Nanosciences

. . Biology:
Engineering: Cytology
Mechanical Eng. Pathology and

Chemical Eng. medicine
Aerospace Eng. Bioengineering

Civil Eng. Biomimetics and
evolution

Figure: S Karthikeyan, l1Sc



Where does machine learning come in?

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 12



Why use machine learning (ML) in materials?

2 Historical | |Future
v N Cars (US) . . . .
S5 F | | ' Technological innovation and deployment is a
e &5
e ) ¢ ) . . . .
z£9¢g§ CathodeiRay TubsTY (U5} ' ' | slow’ process: often limited by materials
> U O 5
3 0 2 g_ Videocassette Recorder (UK) I
o o ©
3 Y
> s 3
S E Cash cards & ATMs (UK) T
>
oL Mobile phone (US) 1T ]
S g
@ § Compact fluorescent light bulbs (UK) D:]
5652
T v Vv
© © 2 Lithium ion rechargeable batteries (Global) T 1
Q. g o
S 9 &
“é 3 Thin Film Transistor LCD TV (Global) El:l
v T
O ¢
[}
E ¢ LED lighting (UK) C T 1
.E Nuclear power (France) | | |
® w . . . .
g3 Combined cycle gas turbines (UK) | V7 Innovation is particularly slow in energy
% -FCJ Solar photovoltaics (Germany) [ [ | seCtor'
Sy
£ £
ul)_, Wind electricity (Denmark) [ [ |

1880 1900 1920 1940 1960 1980 2000 2020 2040

0 Invention, development and demonstration [ EU restriction on natural gas generation
0 Market deployment and commercialisation
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Why use machine learning (ML) in materials?

2 T Cars (US) | I | Historical
[ = o o

s 3t

-5 2 £ Cathode Ray Tube TV (US) | |

VU S 0 S

29538 ~

S w2 s Videocassette Recorder (UK) I
o o ©

oY ‘

> s 3

S E Cash cards & ATMs (UK) T

Future

Technological innovation and deployment is a
‘slow’ process: often limited by materials

Faster ways of discovering new/better materials = faster innovation cycles

Machine learning = “model” materials/“predict” properties faster

Nuclear power (France) | | |

Combined cycle gas turbines (UK) | |

Solar photovoltaics (Germany) [ [ |

Electricity generation
technologies

Wind electricity (Denmark) [ | |

1880 1900 1920 1940 1960 1980 2000 2020

2040

@ Invention, development and demonstration EU restriction on natural gas generation

[ Market deployment and commercialisation

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan

Innovation is particularly slow in energy
sector!



Fourth paradigm of discovery

State objective = Find materials (+ properties) = Demonstrate prototype = Patent/technology transfer

Increasing speed, automation, and scale Accelerated
Discovery

— [

Emi R

Big Data-driven /' v
Science ! Accelerated 1
Computational : ETSN - scientific  MCSM
Sci 4™ Paradigm \ Method l
Theoretical g ‘\ )
.. i 31 Paradigm . s
Empirical Science g [ Assess |
Science 2" Paradigm =
1st Paradigm
Scientific laws Simulations Big data, machine learning Scientific knowledge at scale
Observations Physics, biology, Molecular dynamics Patterns, anomalies Al generated hypotheses
Experimentation chemistry, etc Mechanistic models Visualization Autonomous testing
1600s 1950s 2000s

2020s

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan npj Comput. Mater. 8, 84 (2022) I5



Types of ML in materials

Regressions: make property
predictions better with ‘simple’
inputs

(also classifications)

Interatomic potentials: describe Advanced models:

potential energy surface accurately Diffusion (generative) models, language
models, transfer learning

KNeighborsRegressor, r2: 0.7503

Total energy

=222 [deal o 4
—— linear fit <
2.

@ :
i\ Other atoms
5

l

Potential | «—  Parameters

8° P 0 Atomic
30 positions
’ ] ot

Predicted
O

Actual o *

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 16



DEAD & ALIVE
SCHRODINGER'S CAT

Data organization: python/API
ML: python

Technologies, materials, and machine learning

Design
experiments

Analysis/
Re-analysis

e\
Characterization

Yes of materials
<— | Meets goals?

«—

Liu et al., Sci. China Tech. Sci. 62, 4 (2019)

Cicsp '-P -

MPVM 2025 | Sai Gautam Gopalakrishnan

ibranes

Database system

Design of
expe:?ments

Data mini
and machi

for scale-up

Characteri-
zation |
of properties

e

National Institute of
Standards and Technology

|7



here does the data come from?

Home

B

Leaderboard-Property: General Purpose Algorithms on matbench vo.1

Find more information about this benchmark on

Task name Samples Algorithm Verified MAE (unit) or ROCAUC Notes

312 87.7627 (MPa)

636 33.1918 (meV/atom)

1,265 28.7606 (cm*-1) e required

4,604 0.3327 (eV)

4764 0.2711 (unitless)

4,921 0.9209

&
DEAD & ALIVE
SCHRODINGER'S CAT

5,680 0.9603

10,987 0.0670 (log10(GPa)) structure required

10,987 0.0491 (log10(GPa)) structure required
18,928 0.0269 (eV/unit cell) structure required
106,113 0.1559 (eV) structure required
106,113 0.9520 E e required

132,752 0.0170 (eV/atom) structure required

Data organization: python/API OO G ICS D m

ML: python

https://matbench.materialsproject.org/

National Institute of
Standards and Technology

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 18
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Simulate and identify candidates
(on a transparent touch screen preferably)

Density functional theory: (Approximately) ', :
e —

predict material properties

DEAD&ALIV? Machine learning: learn from
SCHRODINGER'S CAT predictions to make better predictions

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 19



(Modern) ML in materials and use cases

Property predictors, interatomic potentials, advanced models

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 20



Neural networks (NNs)

Suppose we want to fit the following data

Dependent variabl
N
N
Ve
7/

F|tt|ng.a simple Neural networks can
‘ regression model

fit a squiggle
Independent variable

Single layer
neural
network

Optimized biases and weights are obtained via back propagation

Weights and biases determine the part of the activation function
that will contribute to the squiggle

Several types of NNs exist

Graph NNs particularly relevant for materials

}m

Output layer

Input layer
Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan
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Graph neural networks

At the end of first
message passing layer

x1 | x2 | x3

EEED

h.K h, (k+1)
! x1 | x2 | x3 ] .. h4(k)__ 1

Update via
Aggregate activation

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan After multiple message
passing layers

x1 | x2 | x3

EEEN ¢ CEEC e - BEEEE 3
x1 | x2 | x3




Predicting material properties (scratch)

PHYSICAL REVIEW LETTERS 120, 145301 (2018)

Crystal Graph Convolutional Neural Networks for an Accurate
and Interpretable Prediction of Material Properties

Tian Xie and Jeffrey C. Grossman

Department of Materials Science and Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

.....

=
' f e @
g VO o
=3 L1 Qo
— [l utput
' L]
A ®
R Conv L, hidden Pooling L, hidden

Properties : Formation energy, band gap, Fermi energy,
bulk and shear moduli, and Poisson’s ratio

Database: |0* DFT-calculated datapoints from MP

Model: Crystal Graph convolutional neural network
(CGCNN)

Performance:

Formation energy: 0.039 eV/atom

Band gap: 0.388 eV

Fermi energy: 0.363 eV

Elastic moduli: ~1-2 GPa

Poisson’s ratio: 0.03

|dentified 228 ‘synthesizable’ perovskites out of 18928
in the training database

O O 0O o0 O O

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 23



Predicting material properties (transfer learning)

Several key material properties that govern performance in applications
have limited data
* ‘Small’ datasets (< 10* datapoints)
* lonic mobilities, defect formation energies, adsorption energies,...
* Limits application of deep learning (DL) frameworks

Interstitial atom Substitutional larger atom

https://sites.psu.edu/

oooooooo

ooooooo

oooooooooo

.....

Vacancy Frenkel-pair Substitutional smaller atom

Devi et al., npj Comput. Mater. 2022 https://www.differencebetween.com/difference-between-point-defect-and-line-defect/

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 24
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Predicting material properties (transfer learning)

Several key material properties that govern performance in applications
have limited data

* ‘Small’ datasets (< 10* datapoints)
* lonic mobilities, defect formation energies, adsorption energies,...

* Limits application of deep learning (DL) frameworks

Pre-trained CNN

CNN for new task Do et al.,, Korean J. Radiol. 2020

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan 25



Migration barriers = determine rate performance in batteries

Exponential control on diffusivity

1.0
osf- [] [ -
-

go.6f- ] 0.6 s
NZ oal- | b~ ~o.4 Lé

1 i il |

SeonarioA Scemaro B Scenariod 0.0 RFR GBR  SCR-CC MODEL-1-CCMODEL-2 MODEL-3 MODEL-4 MACE-REL.
Build a model (graph based architecture) MODEL-3 (transfer learned) is the best!

Excellent generalization and classification abilities

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan R. Devi, K.T. Butler, and G.Sai Gautam, arXiv 2025 26



Graph networks and interatomic

Application challenge:

Understand phase-change materials
to develop improved devices

crystalline amorphous
“zero” bit

short, high-
intensity pulse

longer, less
intense pulse

high reflectivity low reflectivity
high conductivity low conductivity

Application challenge:

Understand and optimize carbon
materials for coatings or electrodes

Technologies, materials, and machine learning

Application challenge:

Clarify atomic structure of nanoparticles
and its role in catalytic mechanisms

Y2 Oz H*/H0

CO oxidation CO3 reduction

Additive corrections to
@ wave-function-based
( quantum chemistry

Empirical baseline (e.g., exchange repulsion)

MPVM 2025 | Sai Gautam Gopalakrishnan

potentials

Adv. Mater. 31, 1902765 (2019)




Foundational interatomic potentials

MATERIALS PROJECT -
o B Dooonid

[fsile s ala]
[ [crln] e [co| i [culzn]Gol el s e |

[mo|  [rurn[pa[agcal n [sn|sblre] 1 [xe]
[wlre[os] v [Pt [aulwa] m [ob oi [EGCH
s

9/ Bh Hs Mt Ds Rg Cn Nh FI Mc|Lv|Ts |og|

ﬁmmmmmmummm

TS Am Bk 5 Fmita o e

L. FJeow

Ice & water
:

a5

Si interstitial

Amorphous carbon @

Dislocation

e Multicomponent alloys

.
Batteries —

@é? @ Molten salts
e

=
Solvent mixtures

MACE-MP-0

Equivariant Graph
Tensor Network

Hydrogen
4 D

Technologies, materials, and machine learning

Stable dynamics in solids, liquids, and gases
GPU; limited system size

o -
© o

o
Stability of CuO, / eV

U/Vvs. SHE

Prec + Acc+ MAE ¢ R?+

Trained on Materials Project trajectory dataset (~1.5M structures)
Stable performance on 30 different property predictions/application

Ksrme ¢ Training Set

1.665
1725
0.55

0.525
0.647

0.689 1.717

1.412

146k (1.58M
146k (1.58M
146k (1.58M
146k (1.58M
146k (1.58M
146k (1.58M
146k (1.58M

62.8k (188K

) (
) (
) (
) (
) (
) (
) (
) (

https://matbench-discovery.materialsproject.org/
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Batatia et al., arXiv, 2401.00096v2 (2024)
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Property = Structure

I WANT A MATERTAL: HERE ARE SOME POSSIBILITIES
1. STABLE 5 jj‘j;
2. HARD T

$ & 9

t-M—),

https://news.mit.edu/2022/new-way-perform-general-inverse-design-high-accuracy-01 | 8

Optoelectronic 3
Semicondutors

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms. 1489
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https://news.mit.edu/2022/new-way-perform-general-inverse-design-high-accuracy-0118
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1489

@

Use diffusion for structure generation

Forward diffusion

Q(Xt|Xt—1)
B @ @~ @

Gaussian noise added in a Markov chain

Learn conditional probabilities

Pext1|xt
@H —@: @H H

\-_-—’

Reverse diffusion

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction https://medium.com/@luisfelipechary/my-experience-with-diffusion-super-resolution-3386b6574696
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Examples of generative models

0ss Inverse design of new superconductors UniMat + Diffusion (Google Deepmind)

T,>5K

CDVAE » T, :ALIGNN Eform < 0 eV/atom
Egap < 0.05 &V ®
Null
location
z-1 = ae(ze — g (ze,t)) +§
T, : McMillan-Allen- .
61 ( )
S T MatterGen (Microsoft
a 4
=3 MatterGen 0.0150
Y 60 - _l;::l;elted data oo2s
z > 0.0100
@ 40 &
Further Investigation <«—— Dynamically Stable T.>5K 8 g 0o
20 0.0050
0.0025
25 32 %000 o005 om0 015 020 035 T o 2 4 6 8 0000 e 200 300 400 500
Magnetic density [A=3] Band gap [eV] Bulk modulus [GPa]
1 Wines et al., arXiv, 2304.08446v4 (2023) 2 4 6N GdeHaCN; € V2B;05 mvos  f Reglrz ResB.C
i He 20 (P3m1) (C2/m) (P21/m) (Cm) (Cmcm) (P3m1)
5 6 7 8 10 023 A3 0.23 A-3 3.02 eV 3.03 eV 407 GPa 398 GPa
. B c N o] .Ne 6d (N Gd3+ Gd2+ H- @NS— e@@ °N5+@ °° @@@o
- e 80 . B - I )
. 13 g |0 E R ’ |
19 3 70 -
 H- AN DEEEEN O |
s 60 W

Aa B
Ru ] \ Xe
74 34 50 oSS —am
Ir Hg Rn
108 IOS ||0 11| 112

i

107 13 14 115 116 17 18 40 9 Magnetic density >0.2 A-3 Bulk modulus > 400 GPa
Sg Ch Nh FI Mc Lv Ts Og k] o
2 2
3 3 250
£ 40 2
30 & §ZGO
5 5
g g
57 58 59 6 61 6 63 64 65 6 67 68 6 70 = B0
La Ce Pr Nd Pm Sm Eu Gd Th Dy Ho Er Tm Yb 20 220 .
2 S/ 100 —e— MatterGen
8 % 91 92 9 LY 9 96 a7 9% % 100 101 102 ém —e— MatterGen é 50 —e— Screening
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 10 3 Labeled data 3 Labeled data

o
o

o

. . 6 160 260 360 460 560 l(IJD 2(')0 3(']0 460 5(']0
Zeni et aI., arX|v, 2312.03687v2 (2024) DFT property budget DFT property budget
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Conclusions

* Designing better materials critical for performance improvement in several applications

Computations + ML can significantly accelerate materials design

* Different ways to use ML

Property predictions, interatomic potentials, structure generation

* Materials science is a data-limited domain

Garbage in = Garbage out; data normalization

Real vs. synthetic data

What model to choose? Simple models are usually better
‘Real’ success stories: still few, possibly in development

Lots of ongoing work: exciting field!

* General advice

Don’t do ML just because you can

Construct models with care: overfitting, lack of transferability

Test and validate, validate and test,and ...

Technologies, materials, and machine learning MPVM 2025 | Sai Gautam Gopalakrishnan

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STR THE PILE UNTIL
THEY START LOOKING RIGHT

saigsautamg(@iisc.ac.in; https://sai-mat-group.github.io;

https://github.com/sai-mat-group 32
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