

Role of exchange-correlation functionals in migration barrier predictions

Sai Gautam Gopalakrishnan

Materials Engineering, Indian Institute of Science

saigautamg@iisc.ac.in; https://sai-mat-group.github.io

Photo-rechargeable and high-capacity batteries session, Energy storage and batteries track 6th IEEE-ICEE Meeting, Bengaluru December 12, 2022

Acknowledgments

How does the modern Li-ion battery work?

Voltage (V): Potential to do work

Capacity (mAh): Amount of charge stored

Voltage*capacity: Energy stored

Rate (C): How fast can a battery be charged and discharged?

 Crucial for power performance

All performance metrics of a battery system are **material dependent**: anode, cathode, and electrolyte

3

Migration barriers govern rate performance in batteries

- Sulfur atom
- Lithium atom
- Sulfur octahedron surrounding lithium sites
- Sulfur octahedron surrounding Ti sites
- Lithium hop path

Intercalation electrodes/solid electrolytes: ionic diffusivity (D) within the bulk a major factor in rate performance

$$D = D_o \exp(-\frac{E_m}{k_B T})$$

 D_o : Diffusivity pre-factor (carrier concentration, correlations, etc.) k_B : Boltzmann constant T: Temperature E_m : Migration barrier

Migration barrier: dominant factor determining diffusivity

Experimental measurements of E_m : variable-temperature impedance spectroscopy, variable temperature nuclear magnetic resonance, etc.

Computational predictions of E_m : ab initio molecular dynamics, nudged elastic band (NEB)

How accurate are computational predictions?

van der Ven et al. Ann. Rev. Mater. Res. 2018, 48, 27-55.

Methods: Edison vs. Iron Man

Trial and error of candidates in a lab

Density functional theory (DFT): [Approximately] predict material properties

 Thermodynamic, kinetic, and electronic properties

> Machine learning: learn from predictions to make better predictions

Simulate and identify candidates (on a transparent touch screen preferably)

Objectives

Assessing accuracy of computational predictions of ionic mobility

Examples of cathode discovery in Cabatteries, including ionic mobility as a criterion

NEB and computational handles for ionic mobility

NEB: can estimate E_m for an ionic hop from one "stable" site to another

Saddle-point finder by optimizing forces "perpendicular" to the potential energy surface

NEB often used with DFT: approximations within DFT affect NEB estimates

Uniform background charge (NE or ne) [solid electrolytes] Climibing image (CI) approximation [solid electrolytes]

Generalized gradient approximation (GGA)

Perdew-Burke-Ernzerhof²

Exchangecorrelation (XC) choice

Strongly constrained and appropriately normed (SCAN)²

Hubbard U corrected frameworks³: GGA+U, SCAN+U

For electrodes only

1. J.P. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)

- 2. J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015) 7
- 3. V. Anisimov et al., Phys. Rev. B 44, 943 (1991)

Sheppard et al., J. Chem. Phys. 2008, 128, 134106

9 distinct systems considered

Why these systems? Heterogeneity of intercalation ion Diversity of structural frameworks

SCAN exhibits better numerical accuracy, on average

9

Computational performance Is SCAN worth it?

- Computational time with GGA/GGA+U~75% faster than SCAN
- SCAN faster than SCAN+U
- Significant convergence difficulties with SCAN and SCAN+U

GGA for "quicker" estimate

SCAN for "*better*" accuracy

Summary

- Accurate computational predictions of migration barriers:
 important to improve rate performance of batteries
- NEB calculations three computational handles relevant
 - XC framework
 - Uniform background charge
 - Climbing image
- Benchmark computational predictions with experimental barriers for 6 electrodes and 3 solid electrolytes
- SCAN: better accuracy on average
 - Describes better physics in both semiconducting and metallic hosts
 - Cl/ne doesn't influence migration barriers significantly
- Computational hosts+ convergence difficulties: high for SCAN
 - SCAN for better accuracy, but GGA can provide good qualitative trends

Objectives

Assessing accuracy of computational predictions of ionic mobility

Examples of cathode discovery in Cabatteries (Ternary chemical space, NaSICONs)

Ternary Ca-compounds

- $CaMn_2O_4$ - Mn_2O_4 is ok, $CaVO_3$ - VO_3 not ok
- 66 unique structures
- Either of Ca_iTM_jZ_k or TM_jZ_k thermodynamically (meta)stable?
 - $E^{hull} \leq 30$ meV/atom (based on Materials Project²)
 - 10 unique compounds → evaluate (voltage and) mobility

Lu et al., Chem. Mater. 2021, 33, 5809

and

CaNb₂O₄

^{1. &}lt;u>https://icsd.products.fiz-karlsruhe.de/</u>

^{2.} https://materialsproject.org/

Sodium superionic conductors (NaSICONs)

75

tull (meV/atom

High-throughput DFT calculations: 3 candidates

 $Ca_xV_2(PO_4)_3$, $Ca_xMn_2(SO_4)_3$, and $Ca_xFe_2(SO_4)_3$

D.B. Tekliye, G.Sai Gautam, et al., Chem. Mater. 2022, 34, 10133

Conclusions

- Removing material bottlenecks is important for improving performance of energy devices
 - Need cathodes and solid electrolytes with good power performance
 - Need robust computational predictions of ionic mobility
- SCAN provides better accuracy on E_m predictions, on average
 - Computational costs + convergence difficulties: high
- · Ca-containing ternary compounds and NaSICONs screened
 - 2 possible candidates: CaV_2O_4 and $CaNb_2O_4$
 - $Ca_xV_2(PO_4)_3$, $Ca_xMn_2(SO_4)_3$, and $Ca_xFe_2(SO_4)_3$ are promising

NEB Benchmarking:

"Effect of exchange-correlation functionals on the estimation of migration barriers in battery materials", R. Devi, B. Singh, P. Canepa, and <u>G. Sai Gautam</u>, **npj Comput. Mater. 2022**, *8*, 160

Ternary Ca-cathode screening:

"Searching ternary oxides and chalcogenides as positive electrodes for calcium batteries", W. Lu, J. Wang, <u>G.Sai Gautam</u>, and P. Canepa, **Chem. Mater. 2021**, *33*, 5809-5821

Ca-NaSICON screening:

"Exploration of NaSICON frameworks as calcium-ion battery cathodes", D.B. Tekliye, A. Kumar, X. Weihang, T.D. Mercy, P. Canepa, and <u>G.Sai Gautam</u>, **Chem. Mater. 2022**, *34*, 10133-10143