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Why bother about materials science?

3

Key performance bottlenecks in key applications: governed by materials used

B. Dunn et al., Science 2011

Energy and power density of a battery: limited by materials used as 

electrodes (and at times, electrolytes)

Key material properties: stability, ionic mobility, reaction energies

Efficiency of a photovoltaic: choice of semiconductor used as the 

light absorber

Key material properties: band gap, stability, resistance to point 

defects

Usage of better materials → better performance



Why use machine learning (ML) in 
materials science?

4

Technological innovation and deployment is a ‘slow’ process: often limited by materials

Gross et al., Energy Policy 123, 682-699 (2018)

Innovation is 

particularly 

slow in 

energy 

generation 

sector!
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Technological innovation and deployment is a ‘slow’ process: often limited by materials

Gross et al., Energy Policy 123, 682-699 (2018)

Innovation is 

particularly 

slow in 

energy 

generation 

sector!

Faster ways of discovering new/better materials → faster innovation cycles

Machine learning → “model” materials/“predict” properties faster



Materials Genome (2011-present)
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Evolution of ‘modelling’ in materials 
science
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Types of ML in materials science
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Regressions: make property 

predictions better with 

‘simple’ inputs 

(also classifications)

Interatomic potentials: 

describe potential energy 

surface accurately

Advanced topics:

Diffusion (generative) 

models, language models, 

transfer learning



Where does the data come from?
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Liu et al., Sci. China Tech. Sci. 62, 4 (2019)



Where does the data come from?
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Data organization: python/API

ML: python

https://matbench.materialsproject.org/

https://matbench.materialsproject.org/


Classic machine learning models 
and use cases in materials

1

1



Linear and non-linear models
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Relationship of target data can be linear/non-linear with underlying independent variables (descriptors)

Independent variable(s)
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Linear regression/linear model works best Non-linear regression/non-linear model works best

𝑦 = 𝑏 +  ෍

𝑖

𝑎𝑖𝑥𝑖 𝑦 = 𝑏 +  ෍

𝑖

𝑓(𝑎𝑖, 𝑥𝑖) 

Popular models:

• Linear regression (RMSE reduction)

• LASSO regression (L1 norm)

• Ridge regression (L2 norm)

Popular models:

• Random forest

• Support vector machine (SVM)

• K-nearest neighbors (KNN)

• Neural networks*



Overview of non-linear (simple) models
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Most non-linear models can be used both for regression and classification

Random forest Support vector machine K-nearest neighbors

Ensemble model: final decision 

is an average of several trees

Each tree: if-else decisions

• Handle noisy and ’large’ 

data

• Resistant to overfitting

• Less sensitive to training 

data

• May not be interpretable

• Computationally slow for 

’large’ datasets

• Efficient at identifying key 

descriptors in high-

dimensional space

• Memory efficient

• Sensitive to noise in data

• Easy to implement

• Resistant to noisy data

• Memory inefficient (needs to 

store entire training data)

Identify hyperplanes that 

separate data into clusters
Uses feature similarity (i.e., 

‘distance’ from other points) to 

make predictions about 

unseen data



(Classic) machine learning in action:
predicting vacancy formation

14

• ABO3 perovskites 

• A= Ca, Sr, Ba, La, or Ce

• B= Ti, V, Cr, Mn, Fe, Co, 

or Ni

• Database: 341 Datapoints 

obtained from density functional 

theory (DFT) calculations

• Model: A simple linear model with physically intuitive 

descriptors

o Crystal bond dissociation energy

o Crystal reduction potential

o Band gaps

o Energy  above hull

• Performance:

o Mean absolute error (MAE) - 0.45 eV

o BiFeO3 and BiCoO3 identified as viable 

candidates for solar thermochemical water 

splitting



(Classic) machine learning in action:
predicting elastic moduli

15

Database: 3248 Bulk (B) and 

shear modulus (G) data 

obtained from the Materials 

Project (MP) database

• Model: Support vector machine 

regression using 150 composition and 

structural descriptors

• Performance:

o r2 score = 0.94

o Identified incompressible – high 

hardness metal ReWC0.8 and 

Mo0.9W1.1BC with B = 380 and 

370 GPa, respectively

o Experimentally verified



(Classic) machine learning in action:
predicting elastic moduli
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Database: 3248 Bulk (B) and 

shear modulus (G) data 

obtained from the Materials 

Project (MP) database

• Model: Support vector machine 

regression using 150 composition and 

structural descriptors

• Performance:

o r2 score = 0.94

o Identified incompressible – high 

hardness metal ReWC0.8 and 

Mo0.9W1.1BC with B = 380 and 

370 GPa, respectively

o Experimentally verified
Summary: 

• Classical ML models have been used in specific property predictions with varied accuracy



Graph models
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Neural networks
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Fitting a simple 
regression model

Neural networks can fit 
a squiggle

Suppose we want to fit the following data 
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Independent variable

I/P O/P

w1

+b1

w2

+b2

w3

+b3

w4

+b4

+b5

Single layer neural network

Optimized biases and weights are obtained via 

back propagation

Weights and biases determine the part of the 

activation function that will contribute to the 

squiggleHidden layer

Input layer Output layer

Pros

• Robust and accurate

• Parallel processing 

Cons

• Minimal interpretability

• Tendency to overfit

Several types of NNs exist

Graph NNs particularly relevant for materials



Graphs are an intuitive way to model 
atoms and bonds
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Edges represent bonds

(relationships)

Nodes are atoms (features)
Each node has a feature 

vector: collection of atomic 

properties (mass, charge, etc.)

Graphical 
representation 

of the data 
(structure)

Suitable 
convolutional 

scheme

Embeddings 
(pass 

information 
across bonds)

Feed forward to 
a NN (fit 

weights and 
biases)

Regression or 
classification

Graph neural networks can make 

predictions at three levels

• Graph level (overall structure)

• Edge level (for a given bond)

• Node level (for a given atom)

Cons

• Storage/input graph size

• Inability to distinguish 

multiple types of bonds

• Need to ensure 

permutational invariance 

and equivariance

Pros

• Highly accurate

• Message passing: use 

information from neighbors

• Can take into account 

underlying symmetry



Message passing: learn from 
neighbors
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Predicting material properties: 
Diverse material properties with graph neural network

21

Properties : Formation energy, band 

gap, Fermi energy, bulk and shear 

moduli, and Poisson’s ratio

Database: 104 DFT-calculated 

datapoints from MP

Model: Crystal Graph convolutional 

neural network (CGCNN)

Performance:

o Formation energy: 0.039 eV/atom

o Band gap: 0.388 eV

o Fermi energy: 0.363 eV

o Elastic moduli: ~1-2 GPa

o Poisson’s ratio: 0.03

o Identified 228 ‘synthesizable’ 

perovskites out of 18928 in the 

training database



Predicting material properties: 
Mechanical properties for energy storage

22

Mechanically anisotropic interfaces 

suppress dendrite growth

• Dependent on G, B, and elastic 

constants.

Database: Subset of MP containing 

12,000 compounds with Li

Model: 

o Graph neural network for G and B 

prediction

o Gradient boost and Kernel-ridge 

regression for elastic constant 

predictions

Performance:

o RMSE in log(GPa): 0.1268 (G) and 

0.1013 (B)

o 20 interfaces with six solid 

electrolytes predicted to be stable 

against dendrite initiation



Predicting material properties: 
Mechanical properties for energy storage

23

Mechanically anisotropic interfaces 

suppress dendrite growth

• Dependent on G, B, and elastic 

constants.

Database: Subset of MP containing 

12,000 compounds with Li

Model: 

o Graph neural network for G and B 

prediction

o Gradient boost and Kernel-ridge 

regression for elastic constant 

predictions

Performance:

o RMSE in log(GPa): 0.1268 (G) and 

0.1013 (B)

o 20 interfaces with six solid 

electrolytes predicted to be stable 

against dendrite initiation

Summary: 

• Graph networks are an intuitive way to represent materials

• Have advanced accuracy of models and enabled predicting multiple properties with similar 

architecture



Graph models and interatomic 
potentials

24



Why machine learned interatomic 
potentials (MLIPs)?

25

Classical force-fields have difficulties in modelling ‘complex’ potential energy surfaces

• Diversity of species and bonding environments

• Limited accuracy vs. DFT

Mishin, Acta Mater. 214, 116980 (2014)

MLIPs: Flexible functional form

• Can handle diversity of species and bonding environments

• Introduce permutation, rotation invariance

• Improved accuracy vs. DFT compared to classical force-fields

Kocer et al., J. Chem. Phys. 150, 154102 (2019)

Bartók and Csányi, Int. J. Quantum Chem. 116, 1049 (2016)

Fingerprint a local 

environment around 

a reference atom

+ machine-learning 

model

= (classic) MLIP



Message passing is quite useful

26

With message passing 

(𝑡: iteration)

Atom-centered 

representation (without 

message passing)

Message passing helps learn long-range interactions

• Effective interaction from 𝑡 × 𝑟𝑐𝑢𝑡

• Computationally efficient

• Eliminates unnecessary neighbors

Figure: Batatia et al.,, arXiv, 2205.06643v2 (2022)

MLIPs incorporating message 

passing should have higher 

learning rates and describe longer 

range interactions better



Invariance vs. equivariance

27

https://datascience.stackexchange.com/questions/16060/what-is-the-difference-between-equivariant-to-translation-and-invariant-to-tr 

Rotated dog

Dog

Batzner et al., Nat. Commun. 13, 2453 (2022)

In materials parlance:

• Scalars (energies) are invariant

• Vectors (forces) and tensors 

(stresses) are equivariant

• Several useful material properties 

are equivariant

E(3): Translation, Rotation, Reflection

https://datascience.stackexchange.com/questions/16060/what-is-the-difference-between-equivariant-to-translation-and-invariant-to-tr


Foundational models: MACE-MP-0

28Batatia et al., arXiv, 2401.00096v2 (2024)

Trained on Materials Project trajectory 

dataset (~1.5M structures)

• Stable performance on 30 different 

property predictions/application areas

• Stable dynamics in solids, liquids, and 

gases

• GPU; limited system size

https://matbench-discovery.materialsproject.org/ 

Many more to come… 

https://matbench-discovery.materialsproject.org/


MACE in action

29

Using MACE-MP-0 as a pre-screening 

tool in battery cathode identification

Singh et al., ACS Appl. Electron. Mater. 6, 7065-7074 

(2024)

Modelling zeolites (using MACE-ML-IP 

model)

Nasir et al., arXiv, 2411.00436 (2024)
Polarization of 

CaTiO3 with applied 

electric field 

(MACE-MP-0 and 

custom models)

Kutana et al., arXiv, 

2412.03541 (2024)



MACE in action
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Using MACE-MP-0 as a pre-screening 

tool in battery cathode identification

Singh et al., ACS Appl. Electron. Mater. 6, 7065-7074 

(2024)

Modelling zeolites (using MACE-ML-IP 

model)

Nasir et al., arXiv, 2411.00436 (2024)
Polarization of 

CaTiO3 with applied 

electric field 

(MACE-MP-0 and 

custom models)

Kutana et al., arXiv, 

2412.03541 (2024)
Summary: 

• Graph networks enabling message passing, equivariance, and high body-order interactions 

have advanced the accuracy of MLIPs and aided in creation of foundational models



Graph models and transfer learning

31



Materials science is data limited
Several key material properties that govern performance 
in applications have limited data

• ‘Small’ datasets (< 104 datapoints)
• Ionic mobilities, defect formation energies, adsorption energies,…

• Limits application of deep learning (DL) frameworks

32

https://www.differencebetween.com/difference-between-point-defect-and-line-defect/ Devi et al., npj Comput. Mater. 2022

https://sites.psu.edu/ 

https://www.differencebetween.com/difference-between-point-defect-and-line-defect/
https://sites.psu.edu/


Materials science is data limited
Several key material properties that govern performance 
in applications have limited data

• ‘Small’ datasets (< 104 datapoints)
• Ionic mobilities, defect formation energies, adsorption energies,…

• Limits application of deep learning (DL) frameworks

33

Transfer learning: efficiently use DL frameworks on small datasets

• Pre-train (PT) on ’large’ dataset, fine-tune (FT) on ‘small’ dataset

Do et al., Korean J. Radiol. 2020



Materials science is data limited
Several key material properties that govern performance 
in applications have limited data

• ‘Small’ datasets (< 104 datapoints)
• Ionic mobilities, defect formation energies, adsorption energies,…

• Limits application of deep learning (DL) frameworks

34

Transfer learning: efficiently use DL frameworks on small datasets

• Pre-train (PT) on ’large’ dataset, fine-tune (FT) on ‘small’ dataset

How useful is transfer learning in materials science?

• Optimal ways to use? 

• Ways to generate ‘generalized’ models?



7×6 combinations of pair-wise models

35R2

MAE
Test scores

GV: Shear modulus; PH: Phonons: FE: Formation energy; BG: Band gap
PZ: Piezoelectric modulus; DC: Dielectric constant; EBG: Experimental band gap

FT dataset+size
PT dataset (941)

Best model

Pair-wise models: 
better than scratch
• Average increase in 

R2: 25%
• Average decrease 

in MAE: 16%

Best models: GV, 
PH, FE (R2 > 0.75)

Average models: 
BG, DC, EBG

Specific PT 
property: little 
influence on FT

No symmetry



7×6 combinations of pair-wise models

36R2

MAE
Test scores

GV: Shear modulus; PH: Phonons: FE: Formation energy; BG: Band gap
PZ: Piezoelectric modulus; DC: Dielectric constant; EBG: Experimental band gap

FT dataset+size
PT dataset (941)

Best model

Pair-wise models: 
better than scratch
• Average increase in 

R2: 25%
• Average decrease 

in MAE: 16%

Best models: GV, 
PH, FE (R2 > 0.75)

Average models: 
BG, DC, EBG

Specific PT 
property: little 
influence on FT

No symmetry

At capped dataset size, specific PT property is a weak handle; Normal distribution is better

Pair-wise transfer learning has significant utility



MPT: (Beta) Generalized models

37

Inspiration from literature: multi-task crystal graph convolutional neural network1

1. Sanyal et al., arXiv 1811.05660 (2018)

• Build cumulative dataset: 132,270 points

• Remove overlaps

• Add task-dependent prediction heads with a one-hot encoded vector

• Presence/absence of property

• Modify loss function

• PT on all (but one) property, FT on one property

ℒ =
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑝
𝑖 − 𝑦𝑡

𝑖 𝛿𝑖

MPT models can generalize dependence of several properties on the structure



MPT: better on out-of-domain than 
PT-FT

38

Model Test R2 Test MAE

Scratch 0.635 0.148

MPT (all seven datasets) 0.671 0.125

FE(100K) 0.670 0.127

BG(50K) 0.617 0.138

PH(1256) 0.628 0.145

GV(10,987) 0.626 0.143

EBG(2,481) 0.619 0.143

Band gap of 2D materials (1,103 datapoints) from JARVIS-DFT1

1. Choudhary et al. npj Comput. Mater. 6, 173 (2020). 
FE: Formation energy; BG: Band gap; GV: Shear modulus; 

EBG: Experimental band gap

On average, MPT is 6% and 10% better on R2 and MAE than PT-FT

Closest performer to MPT is FE: largest dataset within MPT

MPT models: may generalize quite well with more properties



MPT: better on out-of-domain than 
PT-FT
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Model Test R2 Test MAE

Scratch 0.635 0.148

MPT (all seven datasets) 0.671 0.125

FE(100K) 0.670 0.127

BG(50K) 0.617 0.138

PH(1256) 0.628 0.145

GV(10,987) 0.626 0.143

EBG(2,481) 0.619 0.143

Band gap of 2D materials (1,103 datapoints) from JARVIS-DFT1

1. Choudhary et al. npj Comput. Mater. 6, 173 (2020). 
FE: Formation energy; BG: Band gap; GV: Shear modulus; 

EBG: Experimental band gap

On average, MPT is 6% and 10% better on R2 and MAE than PT-FT

Closest performer to MPT is FE: largest dataset within MPT

MPT models: may generalize quite well with more propertiesSummary: 

• Transfer learning is useful in mitigating data-availability constraint in materials

• MPT provides a systematic way to create generalizable models



Generative models

40



Inverse materials design

41

https://news.mit.edu/2022/new-way-perform-general-inverse-design-high-accuracy-0118 

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1489 

Property → Structure

https://news.mit.edu/2022/new-way-perform-general-inverse-design-high-accuracy-0118
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1489


Generative models (classic)
• Step 1: encode a configuration (𝜎) into a latent/feature space (𝑍)

• 𝑍 = 𝑓(𝜎)

• Critical info of any structure
• Composition
• Lattice parameters
• Atomic positions
• Use graph neural networks to obtain 𝑍
• 𝑍 can be mapped to labelled properties

• Step 2: decode configuration from latent space using a learnable 
function
• 𝜎′ = 𝑓′(𝑍)
• Introduces noise
• Provides a probability distribution (compositions, lattice parameters, and 

positions)

• Step 3: generate configuration by sampling probabilities
• 𝜎𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = 𝑝(𝑍)
• Given constraints on target properties, composition, and/or lattice geometry

42Park et al., Matter 7, 2355-2367 (2024)



Advancements in generative models

43

Classic

Generator confuses discriminator with 

synthetic data

• Beaten by diffusion models 

Progressive noise addition/removal

Sequential probability (language models)

Park et al., Matter 7, 2355-2367 (2024)



What is diffusion?

44

Forward diffusion

Gaussian noise added in a Markov chain

Reverse diffusion

Learn conditional probabilities

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction https://medium.com/@luisfelipechary/my-experience-with-diffusion-super-resolution-3386b6574696 

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction
https://medium.com/@luisfelipechary/my-experience-with-diffusion-super-resolution-3386b6574696


In materials, diffusion models can be 
used for structure generation

45

Crystal diffusion variational autoencoder (CDVAE)

• One of the first diffusion models to be developed 

for structure prediction

• Periodic graph networks for encoding a latent 

space and denoising

• Property predictor: for composition, lattice, and 

number of atoms from latent space

• Langevin dynamics: final structure

Xie et al., ICLR 2022; https://github.com/txie-93/cdvae 

https://github.com/txie-93/cdvae


Diffusion models in action

46

Inverse design of new superconductors

Wines et al., arXiv, 2304.08446v4 (2023)

UniMat + Diffusion (Google Deepmind)

Yang et al., arXiv, 2311.09235v2 (2023)

MatterGen (Microsoft)

Zeni et al., arXiv, 2312.03687v2 (2024)



Diffusion models in action

47

Inverse design of new superconductors

Wines et al., arXiv, 2304.08446v4 (2023)

UniMat + Diffusion (Google Deepmind)

Yang et al., arXiv, 2311.09235v2 (2023)

MatterGen (Microsoft)

Zeni et al., arXiv, 2312.03687v2 (2024)

Summary: 

• Diffusion models generating structures can accelerate materials discovery

• Still in nascent stages, can generate ‘bad’ structures



Conclusions and some thoughts to chew
• Designing better materials critical for performance 

improvement in several applications

• Computations + ML can significantly accelerate 

materials design

• Different ways to use ML (or precursors to ML)

• Regressions (or classifications): predict properties 

using experimental/calculated properties

• Interatomic potentials: model larger/longer 

phenomena on a dynamic lattice

• Diffusion and language models, transfer learning

• Materials science is a data-limited domain

• Garbage in = Garbage out; data normalization

• Real vs. synthetic data

• What model to choose? Simple models are usually 

better

• ‘Real’ success stories: still few, possibly in 

development

• Don’t do ML just because you can (hammer doesn’t 

beget a nail)

• Construct models with care: overfitting, lack of 

transferability

• Test and validate, validate and test, and … 

48saigautamg@iisc.ac.in; https://sai-mat-group.github.io; https://github.com/sai-mat-group   

mailto:saigautamg@iisc.ac.in
https://sai-mat-group.github.io/
https://github.com/sai-mat-group

	Slide 1: Using machine learning to advance materials design
	Slide 2: Acknowledgments
	Slide 3: Why bother about materials science?
	Slide 4: Why use machine learning (ML) in materials science?
	Slide 5: Why use machine learning (ML) in materials science?
	Slide 6: Materials Genome (2011-present)
	Slide 7: Evolution of ‘modelling’ in materials science
	Slide 8: Types of ML in materials science
	Slide 9: Where does the data come from?
	Slide 10: Where does the data come from?
	Slide 11: Classic machine learning models and use cases in materials
	Slide 12: Linear and non-linear models
	Slide 13: Overview of non-linear (simple) models
	Slide 14: (Classic) machine learning in action: predicting vacancy formation
	Slide 15: (Classic) machine learning in action: predicting elastic moduli
	Slide 16: (Classic) machine learning in action: predicting elastic moduli
	Slide 17: Graph models
	Slide 18: Neural networks
	Slide 19: Graphs are an intuitive way to model atoms and bonds
	Slide 20: Message passing: learn from neighbors
	Slide 21: Predicting material properties:  Diverse material properties with graph neural network
	Slide 22: Predicting material properties:  Mechanical properties for energy storage
	Slide 23: Predicting material properties:  Mechanical properties for energy storage
	Slide 24: Graph models and interatomic potentials
	Slide 25: Why machine learned interatomic potentials (MLIPs)?
	Slide 26: Message passing is quite useful
	Slide 27: Invariance vs. equivariance
	Slide 28: Foundational models: MACE-MP-0
	Slide 29: MACE in action
	Slide 30: MACE in action
	Slide 31: Graph models and transfer learning
	Slide 32: Materials science is data limited
	Slide 33: Materials science is data limited
	Slide 34: Materials science is data limited
	Slide 37: MPT: (Beta) Generalized models
	Slide 38: MPT: better on out-of-domain than PT-FT
	Slide 39: MPT: better on out-of-domain than PT-FT
	Slide 40: Generative models
	Slide 41: Inverse materials design
	Slide 42: Generative models (classic)
	Slide 43: Advancements in generative models
	Slide 44: What is diffusion?
	Slide 45: In materials, diffusion models can be used for structure generation
	Slide 46: Diffusion models in action
	Slide 47: Diffusion models in action
	Slide 48: Conclusions and some thoughts to chew

