On the Balance of Intercalation and Conversion Reactions in Battery Cathodes

<u>Gopalakrishnan Sai Gautam</u>, Daniel C. Hannah, Pieremanuele Canepa, Gerbrand Ceder <u>gautam91@mit.edu</u>, <u>dchannah@lbl.gov</u>

> October 4, 2017 232nd ECS Meeting, National Harbor, MD

The Multivalent cathode design challenge

Capacity loss during Mg battery discharge has been attributed to conversion reactions in the cathode

$Mg + MnO_2 \rightarrow MgO + MnO$

Conversion reactions could seriously limit performance of Multivalent cathodes!

- 1. M.M. Thackeray, Prog. Solid St. Chem. 25, 71 (1997)
- 2. T.S. Arthur et al., ACS Appl. Mater. Interfaces 6, 7004 (2014)

Reaction between working ion and cathode host can yield intercalation or conversion

Conversion products are *typically*

- Reduced transition metal oxide forms (ex. MnO₂ → MnO)
- The intercalant oxide is one of the products (ex. MgO)
- Typically irreversible (ex. Mg can't be removed easily from MgO)

We study the discharge (reduction) reaction \rightarrow higher voltage process drives reaction

Can we screen cathodes that favor intercalation over conversion?

P. Canepa, G.S. Gautam, D.C. Hannah et al., Chem. Rev. 117 (5), 4287 (2017)

Conversion on a phase diagram: Mg-Mn-S

Intercalation on a phase diagram: Mg-Mn-O

But most operating battery materials are metastable!

Magnitude of difference between voltages will indicate tendency to convert/intercalate

Polymorph selection can determine whether intercalation or conversion occurs

Kim et al., Adv. Mater. 27, 3377 (2015)

T.S. Arthur et al., ACS Appl. Mater. Interfaces 6, 7004 (2014)

A general thermodynamic framework for assessing conversion vs. intercalation

9

1e⁻ reduction from lowest energy **discharged** polymorph (V_{int/conv}^(discharged))

 $\Delta V(V) = V_{int} - V_{conv}$

Oxides tend to favor intercalation, while sulfides and selenides are more likely to convert.

1e⁻ reduction in lowest energy **charged** polymorph (V_{int/conv}^(charged))

 $\Delta V (V) = V_{int} - V_{conv}$

Starting with lowest energy charged polymorph tends to yield conversion, even for oxides.

2e⁻ intercalation into MX₂ compounds always favors conversion

$$\Delta V(V) = V_{int} - V_{conv}$$

"Conventional" cathode chemistries are not viable for multi-electron redox

The magnitude of V_{int} - V_{conv} determines resistance to conversion

Conclusions

- Implications for battery design:
 - Synthesize in discharged state \rightarrow Resistance to conversion, high Ο voltage, low mobility
 - Synthesize in charged state \rightarrow High mobility, more likely to convert, Ο higher mobility
- Cr oxides resist conversion most strongly among the transition metal oxides
- 2^{e-} reduction of cathode requires us to explore stoichiometries with higher transition metal oxidation states (e.g. V_2O_5 and MoO_3)
- D.C. Hannah, G.S. Gautam, P. Canepa and G. Ceder, "On the balance of intercalation and conversion reactions in battery *cathodes*", in preparation
- P. Canepa, G.S. Gautam, D.C. Hannah et al., Chem. Rev. 117, 4287, 2017

Daniel C. Hannah

Pieremanuele Canepa

OINT CENTER FOR **GY STORAGE RESEARCH**

Prof. Gerbrand Ceder

