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Solar thermochemical (STC) production of H, and/or
CO: oxide perovskites are potential candidates

Candidates so far: lMOx - lMOx_S + 1 0,

. CeO, § 0 2
Concentrated

+ Fe(Fe,X)20,4 solar radiation

 (A,A)BO;

Thermal reduction (TR)
High T (~1673 K)
~vacuum (py,~10 Pa)

Water splitting (WS)
Low T (~873 K)

High H, yield (””—20 - 9)

PH,

State-of-the-art:
Pure fluorite-

1
Ce02 _MO.?C—(S-I_HZO_)EMOX-'_HZ

Similar cycle for CO, splitting
Needs “good” materials!
» Durability (withstand high TR and low WS temperatures)

« Capacity (tolerate high degrees of oxygen off-stoichiometry)
« Stability (no undesired phase transformations)

. : ) e Siegel et al., Ind. Eng. Chem. Res. 2013, 52, 3276
Oxide perovskites: significant current research Carillo and Scheffe, Sol. Energy 2017, 156, 3



How to use theory to...
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« Screen for H,O/CO, thermochemical splitters
with higher entropy of reduction

» Search through a wider chemical space using
machine learning (ML) tools?




Oxygen vacancy formation energy
~enthalpy of reduction
Target reduction conditions:

1 1 1
5 MOx = s MOx—s + (5) 0209) 1673 K, pO, =10 Pa

Enthalpy of reduction for the induced off-stoichiometry, &

Hyo,_ s — Hyo, (1
= Ot 0 1 () Ho,(9)

AI_Ireduction - S
If 6§ - 0, then
dHpyo, 1 v Oxygen vacancy
AHreduction — _7 x + (E) H02 (g) = AHfOC;‘?nation formation energy

Low AHyeguction = large &
But induced 6 needs to be recovered during water-splitting (re-oxidation) 2>optimal AH,cquction

HY %0 ~3.25-3.5 eV (CeO, is ~4 eV)

" 1 = " .
Thermodynamic models' point to optimal AH .. 4yction OF A Formation
For any theoretical screening, 3-3.75 eV range is ok
m PHYSICAL REVIEW MATERIALS 2, 043802 (2018)
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Oxygen vacancy formation energy
~enthalpy of reduction

1 1 1
5 MOx = s MOy s + (5) 02(9) 1673 K, p0, =10 Pa

Target reduction conditions:

Enthalpy of reduction for the induced off-stoichiometry, 6

_ Hyo,_ s —Hyo, (1

Several studies have theoretically screened, high-throughput calculations and/or

machine learning, for novel ABO3; perovskites, based on the optimal AH}/O“r?nation

« Candidates either exhibit rare elements (e.g., Eu, Ho) or don’t exceed CeO,’s
performance in experiments (stability or kinetic limitations/theory error)
* Need more viable candidates: can we include other metrics?

Thermodynamic models' point to optimal AH,cgyction OF AH!%0 ~ 3.25-3.5 eV (CeO, is ~4 eV)

formation
For any theoretical screening, 3-3.75 eV range is ok

HEMISTRY OF - S PHYSICAL REVIEW MATERIALS 2, 043802 (2018)
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Predictions of new ABO; perovski pounds by bining hine learning
High-Throughput Computational Screening of Perovskites for Intrinsic Material Properties Dictating Oxygen Vacancy Formation and density functional theory
Thermochemical Water Splitting Applications Energetics in Metal Oxides

Ann M. Deml,"”" Aaron M Holder,"! Ryan P. O'Hayre,' Charles B. Musgrave,’
onit,

and Vladan Stevanovic*” and Alex Zunger®

Antoine A. Emery, James E. Saal,” Scott Kirklin, Vinay I. Hegde, and Chris Wolverton*
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Higher entropy of reduction = higher yield

Entropy of reduction for an induced off-stoichiometry, §, in ABO3

SaBOs_5 — SABO 1
ASreq =5 “+ (§> So,(9)
solid gas
015 ' ' ' ] ! T T T T T T T T T T T T T T
- |~ — 1 sub-lattice
__ 0.125| L—— 2 sub-lattices 1 Large contribution to the solid portion of AS,.4

comes from configurational entropy

Assuming ideal solution of mixing, large
increase in AS,..; with A+B cation reduction in
ABQO;

For given (optimal) AH,..q4, higher AS,..q =

higher capacit
2.6 2!7 2!8 2!9 3 9 pactty

X in ABOX




Higher entropy of reduction = higher yield

Entropy of reduction for an induced off-stoichiometry, &, in ABO3

SaB0._5 — SaBo 1
ASypg = —— 55 S+ (E) S0,(9)

solid gas
o——————————1——

\ : — — 1 sub-lattice, ABO, 4 ||
— 2 sub-lattices, ABO,
—— GeO, 4

Assuming a simple regular solution model,
simultaneous A+B reduction can yield ~0.014 4k
(mol of O)/(mol atom ABQO3), higher than B-
reduction (~0.009) or CeO, (~0.013)

..0:.009

3 2

« Oxygen evolution capacity AN O,(gas, 1673K, 10Pa)
« A+B reduction 60% > A or B reduction = 3=' NS oo ]
* A+B reduction 9% > CeO,

can yield better capacities

. . . . i <

+ Perovskites with simultaneous cation redox 4k g
- O

0

] " ] " ] "
02 0.04 0.06 0.08 0.1
o/nin ABO, , or CeO,

Potential simultaneously redox active ABO; perovskites?

Required sizes of A and B, charge neutrality, redox-activity constraints = Cag sCeqsMO5
e M=Sgc,Ti, V, Cr, Mn, Fe, Co, and Ni




No experimental Ca, ;Ce, MO, structures
available: use CaMO,; or CeMO,

] . ICSD= Inorganic crystal
Obtain theoretical .
TR Tl — Identify lowest energy structure database
o polymorph
composition

A

High AH,.4: no
oxygen off-
stoichiometry

At least 1 Perform vacancy Low A H,.4:NO
ternary structure _uammmg formation calculations on T
available? ternary structure(s) Water/COZ Sp“ttmg
Start Candidates
Obtain theoretical
structures for nee_d tO ShOW
Cao.5Ce0.5sMOs Opt| mal AHred :
Finish use a 3-3.75 eV

range?

Perform vacancy
Lammeeeny  fOrmation calculations on
quaternary structure

Identify lowest energy Ca-
Ce configuration

Density functional theory engine: strongly constrained and appropriately normed (SCAN) functional,
corrected with optimal Hubbard U correction’

AH,.q ~ Eg[Vag] (oxygen vacancy formation energy) 8
1. G.S. Gautam and E.A. Carter, Phys. Rev. Mater. 2018, 2, 095401; O.Y. Long et al., Phys. Rev. Mater. 2020, 4, 054101 2. E.B. Stechel et al., in preparation



Oxygen vacancy formation energy in Ca, :Ce, :MO,:
Cay5Cen sMnO; and Ca, sCe, sFeO4 are promising

/

O CaMO,-based

B CeMO,-based
t Difficult to generate
oxygen vacancies
i /— j =
S B T | "'1'Dﬁf5uﬁt'o':
split H,O il
N i

Sc Ti V Cr Mn Fe Co Ni

[

Ti4+/3+ V4+/3+

Redox-active cation(s)

M n3+/2+

Cod+2+ Ni4+/3+]

1 Er[Vao]

decreases

4 along 3d from Ti

to Co

Redox activity
determined by

1 standard

reduction
potential and
structural

| factors

Cao.5Ceo_5I\/| n03

4 and

Ca0.5Ceo_5FeO3
show near-

optimal AH, .4
Stability?
Simultaneous
redox? 9



0 K stability of Ca, :Cey :MO;

Impact of configurational entropy (of mixing)

150F
125
100}
75k
501
251

(meV/atom

O CaMO,-based
B CeMO,-based }

Potentially stable at high temperatures

1273K, (ideal) configurational entropy on A-site -

0
'25f
-50

EHuII

Energy gain by

1 decomposition to

“adjacent” stable

1 compounds

E.g., ABOz > AO,+BO

| l Possible dopants -

Structural stability (and AH,..;) might be tunable_-

_Sc

Ti V_Cr Mn Fe Co Ni

Ca;.,Ce,MnO; (x~0.2) has been synthesized before’

l E.g., AO,+BO-> ABO;

Energy gain by
formation from
“adjacent” stable
compounds

Ca, sCe, sMO;, perovskites: can be stabilized at higher temperatures via A-site configurational entropy
1. Zeng et al., Phys. Rev. B 2001, 63, 224410
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Simultaneous Ce+Mn reduction in Ca, ;Ce, sMnO4

Ep[Vao] = 3.65-3.96 eV (< CeO,, 4-4.3 eV")

Bulk Defective (inset)
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On-site magnetic moments: Ce**, Mn3* in bulk
Mn3+ displays Jahn-Teller distortion
Ce fbeyond Fermi; small amount of Mn d states

On-site magnetic moments: Ce**/3+, Mn3+?2+
States: Ce freduction clear, sliver of Mn d

1. Zinkevich et al., Solid State lonics 2006, 777, 989 11



Simultaneous Ce+Mn reduction in Ca, ;Ce, sMnO4

Ep[Vag] = 3.65-3.96 eV (< Ce0O,, 4-4.3 eV')

@50

Electron | Reduced Ce
accumulation
Reduced Mn
Caz* Reduced Mn
doesn’t exhibit
Mn3+ Jahn-Teller
02 distortion

Electron density difference plot: CagsCeqsMnO5 with and without oxygen vacancy

1. Zinkevich et al., Solid State lonics 2006, 177, 989 Simultaneous reduction = candidate! 12



How to use theory to...

;
3 .

% _
i
« Screen for H,O/CO, thermochemical splitters

with higher entropy of reduction &

» Search through a wider chemical space using
machine learning (ML) tools?
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Screening a wider perovskite space for candidates

« Focused computational study on a select class of oxide perovskites: discovery of (Ca,Ce)MnQO4
and (Ca,Ce)FeOs,

» Possible to identify other candidates?
« Key property: Eg[Vag]
* Not possible to look for high entropic candidates in a high-throughput fashion
 Thermodynamic stability (EM!!) also important

«  Workflow: construct a theoretical (ML) model that can predict Eg[Vag]
« Training the model: generate diverse dataset

cubic monoclinic

% &

orthorhombic rhombohedral

hexagonal tetragonal

H Alkaline earth A-site 2+ cations

i BBE Lanthanide A-site 3+/4+ cations

3d transition metal B-site 2+/3+/4+ cations

Na Mg
K Ca Sc Ti \Y Cr Mn Fe Co Ni Cu 2Zn

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

Cs Ba Hf Ta W Re Os Ir Pt Au Hg

Fr  Ra Rf Db Sg Bh Hs Mt Ds Rg Cn

N e
La {[Ce| Pr Nd Pm Sm Eu Gd Tb Dy
) o
Redox/ x ‘

Ac Th Pa U Np Pu Am Cm Bk Cf

active
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Descriptor for ML model: crystal bond
dissociation energy (E,)

Analogous to molecular bond dissociation energy: energy required to break a metal-oxygen bond in a crystal

Eb[OZ_ - MTL+] ==

N,[0?~ — M™t] Number of M-O bonds per formula unit in MO,,
3254 @ n=2 &
&
3.00 - e
' ® n=4 9
2754 O Exp O
" o
T 2.50 - 0o ® 5
Q
W 2.25 - o) -
&
2.00 A ® 9 o) L
8 o
(@)
1'50 I 1 | 1 I 1 1 1 I 1 I 1 1 1 | I 1 I 1 1 ? I

Theoretical E, in good agreement with experiments 15



Descriptor for ML model: crystal reduction
potential

Oxygen vacancy introduction: reduces (transition-metal) cation, need to account for “ease” of

reduction
Standard (aqueous) reduction potentials:
» Are not strictly applicable to solids (no crystal electrostatics included)

* Missing data for few 3d transition metal redox couples
2 -

BN Exp

. SCAN+U
19 o Agueous I | J
0- [ )

e

Reduction potential

_3-
1 l 1 l Ll 1 Ll 1 l 1 1 l 1 1 1 1
+ + + + + o+ + o+ o+ 4+ o+ o+ 4+ + + o+ o+ o+ o+ o+ + o+
OY m 2 O O = O s uwQ = = O s uw Qo =2 O =

Better systematic trends with crystal reduction than aqueous potential 16



Descriptor for ML model: thermodynamic
stability and band gap

Overall thermodynamic stability of

perovskite structure can influence

Ep[Vaol]

« High stability = strong bonding -
high Er[Va,]

« High instability - weak bonding -
low Er [Vao]

* Quantify stability using E#“! at 0 K

« EHull:includes all possible
competing phases

Ease of addition of electrons from
oxygen vacancy formation, via
delocalization, can alter Ex[Va,]
- Large band gap-> requires E; (band
gap) energy —> difficult to delocalize
« Small band gap - small E; - facile
delocalization
* Quantify with E; at I'-point
 Provides upper bound of E,
« Computationally not expensive

Energy

Descriptors: E},, V,, EP*!, and E ()

gs = ground state
ms = metastable

____________________________________________ n-26)+0n/2_5
4 (6/2)0;

O-M bond
dissociation

[Mn+on/2]ms

Metal oxide
stability

B n/2_5+ 268_] B

\ 4

Neutral Vg

formation energy

Va, formation can be thought of as a Born-Haber cycle

____________________________

M reduction
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Model performance: robust especially for
perovskites with low (meta)stability

7
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6 - 8 - R
& ® °0 P
< 5 4 % =
O ’f,‘ ° O
> A >
w 4 $ W
. oV s
= 37 ® =
< @ <
8 2 8 @ c-LaCoO
5 3
,/,‘ ' @ t-LaCoO;
1 -
* @]
@ 4
0 1 1 1 1
0 . ® ®| 6
0.13Ep— 3 8 °|,-0.4(eV)
s g
“Room-te 3 %8 %4
Z 6]
Most signific & o
R=0.34 R= — 048
0 2 4 0.0 0.2 rons per Vag
The tar E4 (eV) Epun (eV/atom) jow) 18

Enuy <0.025 eV/atom
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New candidates

n=4 n=3 n=2
DFT+U
8 1 ¢ (DFT+U)
0 (Model)
6-‘ 3 g
8
- . 0
g * 0 . ¢ ¢ 3
T 0 ¢
3 ¢
0- 8 ¢ @
_2_
Ti V C Mn Fe Co Ni T V Cr Mn Fe Co Ni Co Ni

Trends for low/intermediate/high E,: identify candidates
Possible B-site cations for solar thermochemical (3-3.75 eV): V4, Mn3+, Fe3+, Co3+2+, and Nis*

Candidates from outside the training set:
* R3c-BiFeO; (model E, = 3.99 eV)

* P4mm-BiCoO3; (model E, = 3.80 eV) Experimental validation of new candidates in progress 19



Conclusions and Acknowledgments

* Need better materials for STC H.O/CO. splitting
» Oxide perovskites: tunable AH,..q4, low AS,..q
» Identify simultaneously redox-active perovskites with optimal AH,..; (3-3.75 eV) to improve AS,..4
» Size + charge-neutrality + redox-activity constraints = Ca, sCey sMO; (M = Sc, Ti,...,Ni)

* Cao_5Ceo_5MnO3 and Cao_5Ceo_5Fe03 exhibit near-optimal AHred (z EF[VaO])
* Most quaternaries are not stable at 0 K, but A-site configurational entropy can help
*  Cay5Cey5sMnO;: simultaneous redox-active candidate

+ Built a machine learned model on a diverse set of perovskite structures to predict Vag formation energy
+ Two candidates from outside the training set: BiFeO3; and BiCoO4

Theoretical screening:

“Exploring Ca-Ce-M-O (M=3d transition metal) oxide perovskites for solar thermochemical applications”, G.S.
Gautam, E.B. Stechel and E.A. Carter, Chem. Mater. 2020, 32, 9964-9982

Machine learning model:

“Factors governing oxygen vacancy formation in oxide perovskites”, R.B. Wexler, G.S. Gautam, E.B. Stechel,
and E.A. Carter, J. Am. Chem. Soc. 2021, 7143, 13212-13227

(Princeton) NREL (Eagle)
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saigautamg@iisc.ac.in; https://sai-mat-group.github.io
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