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Solar thermochemical (STC) production of H2 and/or 
CO: oxide perovskites are potential candidates

2

1
𝛿
𝑀𝑂! →

1
𝛿
𝑀𝑂!"# +

1
2
𝑂$

1
𝛿𝑀𝑂!"# + 𝐻$𝑂 →

1
𝛿𝑀𝑂! + 𝐻$

Siegel et al., Ind. Eng. Chem. Res. 2013, 52, 3276
Carillo and Scheffe, Sol. Energy 2017, 156, 3

MOx−δMOx

O2

H2/H2OH2O

Concentrated

solar radiation

Heat

Recuperation

Reduction

Oxidation

Thermal reduction (TR)
High T (~1673 K)
~vacuum (𝑝%!~10 Pa) 

Water splitting (WS)
Low T (~873 K)
High H2 yield &"!#

&"!
= 9

Similar cycle for CO2 splitting

Candidates so far: 
• CeO2
• Fe(Fe,X)2O4
• (A,A’)BO3

State-of-the-art:
Pure fluorite-
CeO2

Needs “good” materials! 
• Durability (withstand high TR and low WS temperatures)
• Capacity (tolerate high degrees of oxygen off-stoichiometry)
• Stability (no undesired phase transformations)

Oxide perovskites: significant current research



How to use theory to…

• Screen for H2O/CO2 thermochemical splitters 
with higher entropy of reduction

• Search through a wider chemical space using 
machine learning (ML) tools?
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Oxygen vacancy formation energy 
~enthalpy of reduction
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Target reduction conditions: 
1673 K, pO2 =10 Pa

Enthalpy of reduction for the induced off-stoichiometry, 𝛿
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Low Δ𝐻!"#$%&'() = large 𝛿
But induced 𝛿 needs to be recovered during water-splitting (re-oxidation) àoptimal Δ𝐻!"#$%&'()

If 𝛿 → 0, then
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43# Oxygen vacancy 
formation energy

Thermodynamic models1 point to optimal Δ𝐻!"#$%&'() or Δ𝐻*(!+,&'()
-,! ~ 3.25-3.5 eV (CeO2 is ~4 eV)

For any theoretical screening, 3-3.75 eV range is ok

1.Stechel, Ermanoski, and Miller, in preparation
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Several studies have theoretically screened, high-throughput calculations and/or 
machine learning, for novel ABO3 perovskites, based on the optimal Δ𝐻1.'23,-./

43#

• Candidates either exhibit rare elements (e.g., Eu, Ho) or don’t exceed CeO2’s 
performance in experiments (stability or kinetic limitations/theory error)

• Need more viable candidates: can we include other metrics?



Higher entropy of reduction = higher yield
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Entropy of reduction for an induced off-stoichiometry, 𝛿, in ABO3
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Large contribution to the solid portion of Δ𝑆!"#
comes from configurational entropy

Assuming ideal solution of mixing, large 
increase in Δ𝑆!"# with A+B cation reduction in 
ABO3

For given (optimal) Δ𝐻!"#, higher Δ𝑆!"# = 
higher capacity



Higher entropy of reduction = higher yield
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n= 3 in CeO2, 5 in ABO3Potential simultaneously redox active ABO3 perovskites?
Required sizes of A and B, charge neutrality, redox-activity constraints = Ca0.5Ce0.5MO3
• M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni

Assuming a simple regular solution model, 
simultaneous A+B reduction can yield ~0.014 
(mol of O)/(mol atom ABO3), higher than B-
reduction (~0.009) or CeO2 (~0.013)

• Oxygen evolution capacity
• A+B reduction 60% > A or B reduction
• A+B reduction 9% > CeO2

• Perovskites with simultaneous cation redox 
can yield better capacities



No experimental Ca0.5Ce0.5MO3 structures 
available: use CaMO3 or CeMO3
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Get all CaMO3 and CeMO3 
ternary structures from 

ICSD

Perform vacancy 
formation calculations on 

quaternary structure

Identify potential 
candidates

Standard template 
structures

At least 1 
ternary structure 

available?

Perform vacancy 
formation calculations on 

ternary structure(s)

Identify lowest energy 
polymorph

Obtain theoretical 
structures for 
composition

Obtain theoretical 
structures for 
Ca0.5Ce0.5MO3

Identify lowest energy Ca-
Ce configuration

Start

Finish

Yes

No High Δ𝐻!"#: no 
oxygen off-
stoichiometry

Low Δ𝐻!"#: no 
water/CO2 splitting

Candidates 
need to show 
optimal Δ𝐻!"#: 
use a 3-3.75 eV 
range2

Density functional theory engine: strongly constrained and appropriately normed (SCAN) functional, 
corrected with optimal Hubbard U correction1

• Δ𝐻!"# ≈ E.[Va/] (oxygen vacancy formation energy)
1. G.S. Gautam and E.A. Carter, Phys. Rev. Mater. 2018, 2, 095401; O.Y. Long et al., Phys. Rev. Mater. 2020, 4, 054101 2. E.B. Stechel et al., in preparation

ICSD= Inorganic crystal 
structure database



Oxygen vacancy formation energy in Ca0.5Ce0.5MO3: 
Ca0.5Ce0.5MnO3 and Ca0.5Ce0.5FeO3 are promising
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Difficult to generate 
oxygen vacancies

Difficult to 
split H2O

Ce4+/3+ Ce4+/3+Ce4+/3+ Ce4+/3+Ti4+/3+ V4+/3+

Mn3+/2+
Co3+/2+ Ni4+/3+

Redox-active cation(s)

E.[Va/]
decreases 
along 3d from Ti
to Co

Redox activity 
determined by 
standard 
reduction 
potential and 
structural 
factors

Ca0.5Ce0.5MnO3
and 
Ca0.5Ce0.5FeO3
show near-
optimal Δ𝐻!"#
Stability?
Simultaneous 
redox?



0 K stability of Ca0.5Ce0.5MO3
Impact of configurational entropy (of mixing)
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Energy gain by 
decomposition to 
“adjacent” stable 
compounds

E.g., ABO3 à AO2+BO

Energy gain by 
formation from 
“adjacent” stable 
compounds

E.g., AO2+BOà ABO3

298K, vibrational entropy

1273K, (ideal) configurational entropy on A-site

Potentially stable at high temperatures

Structural stability (and Δ𝐻!"#) might be tunable

Possible dopants

Ca0.5Ce0.5MO3 perovskites: can be stabilized at higher temperatures via A-site configurational entropy

Ca1-xCexMnO3 (x~0.2) has been synthesized before1

1. Zeng et al., Phys. Rev. B 2001, 63, 224410



Simultaneous Ce+Mn reduction in Ca0.5Ce0.5MnO3
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E.[Va/] = 3.65-3.96 eV (< CeO2, 4-4.3 eV1)

1. Zinkevich et al., Solid State Ionics 2006, 177, 989
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On-site magnetic moments: Ce4+/3+, Mn3+/2+

States: Ce f reduction clear, sliver of Mn d
On-site magnetic moments: Ce4+, Mn3+ in bulk
Mn3+ displays Jahn-Teller distortion
Ce f beyond Fermi; small amount of Mn d states

Defective (inset)



Simultaneous Ce+Mn reduction in Ca0.5Ce0.5MnO3
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E.[Va/] = 3.65-3.96 eV (< CeO2, 4-4.3 eV1)

1. Zinkevich et al., Solid State Ionics 2006, 177, 989

Electron density difference plot: Ca0.5Ce0.5MnO3 with and without oxygen vacancy

Ca2+

Ce4+

Mn3+

O2-

Electron 
accumulation

Oxygen removed

Reduced Ce
Reduced Mn

Reduced Mn 
doesn’t exhibit 
Jahn-Teller 
distortion

Simultaneous reduction = candidate!



How to use theory to…

• Screen for H2O/CO2 thermochemical splitters 
with higher entropy of reduction  ☑

• Search through a wider chemical space using 
machine learning (ML) tools?
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Screening a wider perovskite space for candidates
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• Focused computational study on a select class of oxide perovskites: discovery of (Ca,Ce)MnO3
and (Ca,Ce)FeO3

• Possible to identify other candidates?
• Key property: E. Va/
• Not possible to look for high entropic candidates in a high-throughput fashion
• Thermodynamic stability (E0122) also important

• Workflow: construct a theoretical (ML) model that can predict E. Va/
• Training the model: generate diverse dataset

233 composition-structure combinations, 341 unique E. Va/



Descriptor for ML model: crystal bond 
dissociation energy (Eb)

15Theoretical Eb in good agreement with experiments 

Analogous to molecular bond dissociation energy: energy required to break a metal-oxygen bond in a crystal

𝐸7 𝑂$" −𝑀/8 =
𝐸+ 𝑀𝑂/

$
𝑁7 𝑂$" −𝑀/8

Cohesive energy of MOn/2 oxide

Number of M-O bonds per formula unit in MOn/2

𝐸+ 𝑀𝑂/
$
= −Δ𝐸1 𝑀𝑂/

$
+ 𝐸+ 𝑀 +

𝑛
4 𝐵𝐷𝐸[𝑂$]

Formation energy of MOn/2 oxide
Cohesive energy of M metal

Bond dissociation energy of O2(g)

Eb: can be obtained from calculations or from experimental data

Example: 𝐸7 𝑂$" − 𝐶𝑒98 =
𝐸:;5<8= 𝐶𝑒 + 2𝐸:;5< 𝑂 − 𝐸:;5<8= 𝐶𝑒𝑂$

8
Isolated Ce and O atoms, not bulk



Descriptor for ML model: crystal reduction 
potential
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Oxygen vacancy introduction: reduces (transition-metal) cation, need to account for “ease” of 
reduction
Standard (aqueous) reduction potentials:
• Are not strictly applicable to solids (no crystal electrostatics included)
• Missing data for few 3d transition metal redox couples

Define crystal reduction potentials (Vr) in terms of reduction enthalpies of oxides

𝑉' 𝑀/8 → 𝑀28 = −
𝐸' 𝑀/8 → 𝑀28

𝑛 − 𝑚 𝐹
Enthalpy of reduction of ground-state MOn/2 to MOm/2

Faraday’s constant

𝐸' 𝑀/8 → 𝑀28 = 𝐸 𝑀𝑂2
$
+

𝑛 −𝑚
4 𝐸 𝑂$ − 𝐸 𝑀𝑂/

$

Can be determined experimentally 
or theoretically

Example: 𝑉' 𝐶𝑒98 − 𝐶𝑒>8 = −
1
2𝐸

:;5<8= 𝐶𝑒$𝑂> + 14𝐸
:;5< 𝑂$ − 𝐸:;5<8= 𝐶𝑒𝑂$
𝐹

Better systematic trends with crystal reduction than aqueous potential



Descriptor for ML model: thermodynamic 
stability and band gap
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Overall thermodynamic stability of 
perovskite structure can influence 
𝐸3[𝑉𝑎4]
• High stability à strong bonding à

high 𝐸3[𝑉𝑎4]
• High instability à weak bonding à

low 𝐸3 𝑉𝑎4
• Quantify stability using 𝐸5$66 at 0 K
• 𝐸5$66: includes all possible 

competing phases

Ease of addition of electrons from 
oxygen vacancy formation, via 
delocalization, can alter 𝐸3[𝑉𝑎4]
• Large band gapà requires 𝐸7 (band 

gap) energy à difficult to delocalize
• Small band gap à small 𝐸7 à facile 

delocalization
• Quantify with 𝐸7 at Γ-point

• Provides upper bound of 𝐸"
• Computationally not expensive

Descriptors: 𝐸7 , 𝑉' , 𝐸?*@@ , and 𝐸A(Γ)

VaO formation can be thought of as a Born-Haber cycle



Model performance: robust especially for 
perovskites with low (meta)stability
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“Room-temperature-stable” dataset (142) All dataset (341)

The target window for identifying solar thermochemical water splitters: 3-3.75 eV (0.75 eV window) 

Most significant descriptor: crystal reduction potential
Coefficients add to 1.9 (~2)– number of electrons per VaO



New candidates
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Trends for low/intermediate/high Ev: identify candidates
Possible B-site cations for solar thermochemical (3-3.75 eV): V4+, Mn3+, Fe3+, Co3+/2+, and Ni2+

Candidates from outside the training set: 
• 𝑅I3𝑐-BiFeO3 (model Ev = 3.99 eV)
• 𝑃4𝑚𝑚-BiCoO3 (model Ev = 3.80 eV) Experimental validation of new candidates in progress



Conclusions and Acknowledgments
• Need better materials for STC H2O/CO2 splitting

• Oxide perovskites: tunable Δ𝐻!"#, low Δ𝑆!"#
• Identify simultaneously redox-active perovskites with optimal Δ𝐻!"# (3-3.75 eV) to improve Δ𝑆!"#
• Size + charge-neutrality + redox-activity constraints = Ca0.5Ce0.5MO3 (M = Sc, Ti,…,Ni)

• Ca0.5Ce0.5MnO3 and Ca0.5Ce0.5FeO3 exhibit near-optimal Δ𝐻!"#(≈ E$ Va% )
• Most quaternaries are not stable at 0 K, but A-site configurational entropy can help
• Ca0.5Ce0.5MnO3: simultaneous redox-active candidate

• Built a machine learned model on a diverse set of perovskite structures to predict VaO formation energy
• Two candidates from outside the training set: BiFeO3 and BiCoO3
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Theoretical screening: 
“Exploring Ca-Ce-M-O (M=3d transition metal) oxide perovskites for solar thermochemical applications”, G.S. 
Gautam, E.B. Stechel and E.A. Carter, Chem. Mater. 2020, 32, 9964-9982

Machine learning model:
“Factors governing oxygen vacancy formation in oxide perovskites”, R.B. Wexler, G.S. Gautam, E.B. Stechel, 
and E.A. Carter, J. Am. Chem. Soc. 2021, 143, 13212-13227
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