

Computational Screening of Positive Electrode Materials for Ca-Ion Batteries

Sai Gautam Gopalakrishnan, Ankit Kumar, Dereje Tekliye, Xie Weihang, Wang Lu, Juefan Wang, Pieremanuele Canepa

Materials Engineering, Indian Institute of Science

saigautamg@iisc.ac.in; https://sai-mat-group.github.io

DS04: Recent advances in data-driven discovery of materials for energy conversion and storage Materials Research Society Spring 2022 Meeting May 9, 2022

Why beyond-Li-ion batteries?

Next generation of electric devices will benefit from higher energy density storage systems

- Multi-valent == More electrons (Ca²⁺, Mg²⁺, Al³⁺, etc.)
- Large volumetric energy density == Smaller batteries
- Li-ion technology approaching fundamental limits
 - Safety, supply-chain constraints; limits on achievable energy densities

Why Ca?

- Superior volumetric capacity for Ca metal (~2077 Ah/l) than Li in graphite (~800 Ah/l)
- Ca is safer than Li, less constrained geopolitically
- Similar standard reduction potential for Ca (-2.87 V vs. SHE) vs. Li (-3.04 V)

Ca: Find cathodes with reasonable voltage, capacity, and mobility, and be thermodynamically stable

Objectives

Screening ternary chemical space

(Exchange-correlation functional: Hubbard *U* corrected Perdew-Burke-Ernzerhof or PBE+*U*)

Searching through the "NaSICON" chemical space

Let's look at ternary Ca-compounds

- Inorganic crystal structure database (ICSD¹): has > **210,000** compounds
- Only 365 are ternary compounds containing Ca
 - Compounds of composition $Ca_iM_jZ_k$; M, Z = elements other than Ca
- Let M = TM (i.e., transition metal) and Z = O, S, Se, or Te
 - Results in 181 unique compounds
- Charge-neutral charged compound (TM_iZ_k) available for Ca_iTM_iZ_k?
 - $CaMn_2O_4$ - Mn_2O_4 is ok, $CaVO_3$ - VO_3 not ok
 - 66 unique structures
- Either of $Ca_iTM_jZ_k$ or TM_jZ_k thermodynamically (meta)stable?
 - $E^{hull} \leq 30 \text{ meV/atom}$ (based on Materials Project²)
 - **10** unique compounds \rightarrow evaluate voltage, mobility

https://materialsproject.org/ 2.

Final

candidates!

https://icsd.products.fiz-karlsruhe.de/

Voltages calculated with GGA+U

Conversion voltage: tendency of Ca-discharged composition to decompose (CaO+MO)

6

Ca diffusivity: nudged elastic band

 $D \approx \frac{x^2}{t}$ Electrode particle size Diffusion time (rate of operation)

$$D = \nu a^2 f g x_D \exp\left(-\frac{E_m}{k_B T}\right)$$

Diffusivity mainly governed by barrier Required diffusivity \rightarrow maximum of E_m Variables: size, time, and temperature

Nudged Elastic band: Sheppard et al., J. Chem. Phys. 2008, 128, 134106

2 candidates display reasonable E_m

- CaV₂O₄: 654 meV
- CaNb₂O₄: 785 meV

Migration pathways of candidates

 $CaV_2O_4: 8 \rightarrow 3 \rightarrow 8$ $CaNb_2O_4: 6 \rightarrow 4 \rightarrow 6 \rightarrow 4 \rightarrow 6$

Can we frame some design rules to discover more facile Ca diffusers?

Design rules: update

- Existing rules to identify facile ionic conductors¹ doesn't work for Ca:
- Avoid structures with Ca's "preferred" coordination of 8
 - CaV_2O_4 ($E_m = 654$ meV) and $CaMoO_3$ (2072 meV) have Ca in 8-coordination
- Reduce changes in coordination number during migration
 - CaV₂O₄ (coordination change of 5) and CaNb₂O₄ (change of 2) have low barriers
- Increase volume per anion (i.e., prefer S²⁻ instead of O²⁻) to reduce E_m
 - CaCu₂S₂ (E_m = 1622 meV) has higher barriers than several oxides

Design rules: update

- Existing rules to identify facile ionic conductors¹ doesn't work for Ca:
- Avoid structures with Ca's "preferred" coordination of 8
 - CaV_2O_4 ($E_m = 654$ meV) and $CaMoO_3$ (2072 meV) have Ca in 8-coordination
- Reduce changes in coordination number during migration
 - CaV_2O_4 (coordination change of 5) and $CaNb_2O_4$ (change of 2) have low barriers
- Increase volume per anion (i.e., prefer S²⁻ instead of O²⁻) to reduce E_m
 - $CaCu_2S_2$ ($E_m = 1622$ meV) has higher barriers than several oxides

Updated design rules for identifying facile Ca conductors:

- Structures should exhibit optimal area/diagonal/volume fraction of Ca at transition state
- Avoid face-sharing cations at transition state
- Minimize volume fraction change during migration

Design rules: update

- Existing rules to identify facile ionic conductors¹ doesn't work for Ca:
- Avoid structures with Ca's "preferred" coordination of 8
 - CaV_2O_4 ($E_m = 654$ meV) and $CaMoO_3$ (2072 meV) have Ca in 8-coordination
- Reduce changes in coordination number during migration
 - CaV_2O_4 (coordination change of 5) and $CaNb_2O_4$ (change of 2) have low barriers
- Increase volume per anion (i.e., prefer S²⁻ instead of O²⁻) to reduce E_m
 - CaCu₂S₂ (E_m = 1622 meV) has higher barriers than several oxides

Summary:

- Identified two Ca-cathode candidates: CaV₂O₄ (post-spinel) and CaNb₂O₄ (layered)
- Updated design rules to identify other facile Ca conductors

Updated design rules for identifying facile Ca conductors:

- Structures should exhibit optimal area/diagonal/volume fraction of Ca at transition state
- Avoid face-sharing cations at transition state
- Minimize volume fraction change during migration

Objectives

Screening ternary chemical space

Searching through the "NaSICON" chemical space

(Exchange-correlation functional: Hubbard *U* corrected strongly constrained and appropriately normed or SCAN+*U*)

NaSICONs: Polyanionic hosts with robust structural stability

- Na superionic conductors: NaSICONs, polyanionic hosts
 - Original composition: $Na_{1+x}Zr_2P_{3-x}Si_xO_{12}$; General composition: $Na_xM_2(ZO_4)_3$
- Polyanionic hosts: better structural stability with Na removal
 - Transition metal polyhedra usually connected via PO₄, SiO₄, or SO₄ groups

Theoretically, 4 moles of Na exchange possible in $Na_xV_2(PO_4)_3$

- x = 0 to 4
- 2 Na sites (Na1 and Na2)

Structure is rhombohedral or monoclinic depending on Na concentration

Conventional cell: 6 M₂(ZO₄)₃ formula units

Primitive cell: 2 formula units

NaSICONs: Polyanionic hosts with robust structural stability

Na⁺ (1.02 Å) and Ca²⁺ (1.0 Å) have similar ionic radii: can NaSICONs act as Ca-intercalation hosts? Preliminary experimental evidence is positive [Kim et al., *ACS Energy Lett.* **2020**, *5*, 3203–3211]

Charge neutrality constraints

Depending on polyanionic species: Ca concentration is constrained by possible oxidation states of the 3*d* transition metal (M), i.e., charge neutrality of the structure

E.g., consider $Ca_xM_2(SiO_4)_3$ with possible M oxidation states to be +2 (discharged) \leftrightarrow +4 (charged)

discharged

 \sim Ca₄M₂(SiO₄)₃

Similarly, for $Ca_{x}M_{2}(PO_{4})_{3}$ and $Ca_{x}M_{2}(SO_{4})3$,

7×10

 $Ca_2M_2(SiO_4)_3$

7×6 $Ca_{2.5}M_2(PO_4)_3$ $Ca_{0.5}M_2(PO_4)_3$ 2×7

charged

7×4 $Ca_1M_2(SO_4)_3$ $Ca_0M_2(SO_4)_3$ 1×7

Enumerate Ca-vacancy configurations in primitive NaSICON with pymatgen¹ for a given M Repeat process for M = Ti, V, Cr, Mn, Fe, Co, and Ni (168 structures)

Perform SCAN+U calculations to estimate ground state configurations, average voltage and stability

<u>https://pymatgen.org</u> Theoretical capacities: PO_4 (255-270 mAh/g) > SiO_4 (225-240) \gg SO₄ (130-140)

1×7

Average voltages: Co and Ni are highest across polyanionic groups

Monotonic increase in average voltage across Ti \rightarrow Ni for PO₄ and SiO₄

Consistent with standard reduction potentials

 PO_4 voltages > SiO_4

- Inductive effect
- Also responsible for SO₄ > PO₄ in Mn, Co and Ni

"Local" minima in voltage trends for Cr and Fe SO₄

 Stability of Cr³⁺ and Fe³⁺ states

Voltage×capacity: PO₄ may be optimal

Phosphates and sulfate Ca-NaSICONs: likely to be stable

E^{hull} based on 0 K DFT calculations of all available "ordered" structures (~250) in ICSD

All charged and discharged silicates unstable: unsuitable for Ca-cathodes Several $M_2(SO_4)_3$ (M = Ti, V, Cr, Mn, and Fe) are stable: consistent with experimental synthesis

 $Ca_{0.5}Mn_2(PO_4)_3$ and $Ca_{2.5}Mn_2(PO_4)_3$ stable: promising candidate! Other candidates: $Ca_xV_2(PO_4)_3$, $Ca_xMn_2(SO_4)_3$, and $Ca_xFe_2(SO_4)_3$

Conclusions and Acknowledgments

- Removing material bottlenecks is important for improving performance of energy devices
 - Need better, safer, and cheaper batteries (Ca vs. Li), need good Ca-cathodes
- Ca-containing ternary compounds from ICSD screened
 - Screening criteria: redox-activity, charge-neutrality, and thermodynamic stability (PBE+U)
 - 2 possible candidates: CaV₂O₄ and CaNb₂O₄
- Chemical space of NaSICONs explored as Ca-cathodes
 - Average voltages, theoretical capacity, and thermodynamic stability calculated (SCAN+U)
 - Mn-based phosphate and sulfate, V-sulfate, and Fe-sulfate are promising

Ca-electrodes:

"Searching ternary oxides and chalcogenides as positive electrodes for calcium batteries", W. Lu, J. Wang, <u>G.S.</u> <u>Gautam</u>, and P. Canepa, **Chem. Mater. 2021**, *33*, 5809-5821

NaSICON screening: "Exploration of NaSICON frameworks as calcium-ion battery cathodes", D.B. Tekliye, A. Kumar, X. Weihang, T.D. Mercy, P. Canepa, and <u>G.S. Gautam</u>, **to be submitted**

The team

Sai Gautam Gopalakrishnan Principal Investigator

Nidhish Sagar Integrated Masters Student

Reshma Devi Parthasarathy Ph. D. student

Rutvij Pankaj Kulkarni ^{Project Associate}

Debolina Deb Ph. D. student

Jayant Kumar Masters student

Sanyam Nitin Totade Masters student

Dereje Bekele Tekliye Ph. D. student

Abhirup Bhadra Visiting Ph.D. Student

Tanmay Mohan Bhagwat Intern (Undergraduate)

Anooj Sathyan Undergraduate Student

Swathilakshmi Intern (Undergraduate)

Ankur Srivastava Ph. D. student (co-advised)

Vijay Choyal Institute of Eminence Fellow

Adilakshmi Chirumamilla Masters student

Sachin Kumar Masters student