

Materials discovery for energy storage using computations and machine learning

Sai Gautam Gopalakrishnan

Simulations And Informatics of MATerials (SAI-MAT) group

Materials Engineering, Indian Institute of Science

saigautamg@iisc.ac.in; https://sai-mat-group.github.io

Various locations in Germany May, 2023

Where are we?

- IISc is 114 years old (as of 27 May)
- Six divisions
 - Biological sciences
 - Chemical sciences
 - Electrical, electronics, and computer sciences
 - Physical and mathematical sciences
 - Mechanical sciences
 - Interdisciplinary sciences
 - ~500 faculty, ~4000 graduate students
- Department of Materials Engineering (formerly Metallurgy): established 1945
 - 26 faculty (including permanent scientists)
 - 4 Honorary faculty
 - 4 Visiting/Adjunct faculty
 - 3 Inspire faculty fellow
 - ~140 graduate students

Acknowledgments

Group picture in Dec 2022

Dr. Piero Canepa

We work broadly on energy materials

Design better electrodes and solid electrolytes

Develop better light-absorbing semiconductors

Identify better thermochemical H₂O-splitters

Identify novel materials for applications

- Use high-throughput screening +/- machine learning (ML) to generate key performancedetermining descriptors
- Collaborate with experimental groups for validation of theoretical predictions

Understand underlying materials phenomena better

- In-depth studies focused on thermodynamic, kinetic or electronic behavior of a given (candidate) material
- Predict "stable" configurations, mobility bottlenecks, suppress/enhance defect formation, etc.

Make theory better

- Benchmark existing theoretical models against experimental data to identify best ones
- Develop better models for simulating complex phenomena

We do theory, computations, & ML

Density functional theory (**DFT**): (Approximately) predict material properties

- Structural (lattice parameters)
- Thermodynamic (voltages, stabilities, phase diagrams)
- Electronic (band gaps)
- Magnetic (oxidation states, magnetic moments)
- High-throughput "screening"

ML: regressions and interatomic potentials

Ab initio and classical (ML) molecular dynamics: kinetic properties

Snapshots of our research

Pnictides as possible photovoltaics

Quantify ionic mobility in solid electrolytes

Sodium superionic conductor (NaSICON): known Na solid ionic conductor

Conductivity not known as a function of composition

Z. Deng, <u>G. Sai Gautam</u>, P. Canepa, and coworkers, **Nat. Commun. 2022**, *13*, 4470

Quantify ionic mobility in solid electrolytes

Sodium superionic conductor (NaSICON): known Na solid ionic conductor

Conductivity not known as a function of composition

Perform DFT+NEB at different compositions and subsequently use kinetic Monte Carlo simulations

Good agreement with experimental measurements

Z. Deng, <u>G. Sai Gautam</u>, P. Canepa, and coworkers, **Nat. Commun. 2022**, *13*, 4470

Z. Deng, <u>G. Sai Gautam</u>, P. Canepa, and coworkers, Nat. Commun. 2022, 13, 4470

Which "functional" predicts migration barriers well?

Migration barriers: crucial for power performance

Which exchange-correlation functional is best suited for migration barrier predictions in battery materials?

R. Devi, B. Singh, P. Canepa, and <u>G.Sai Gautam</u>, **npj Comput. Mater. 2022**, *8*, 160 12

Which "functional" predicts migration barriers well?

Migration barriers: crucial for power performance

Which exchange-correlation functional is best suited for migration barrier predictions in battery materials?

Strongly constrained and appropriately normed (SCAN) more accurate on average

- Describes right electronic structure
- Computationally expensive and difficult to converge
- Generalized gradient approximation (GGA): not bad either

R. Devi, B. Singh, P. Canepa, and <u>G.Sai Gautam</u>, **npj Comput. Mater. 2022**, *8*, 160 13

Deep dives Ca-cathode screening

14

Why beyond-Li-ion batteries?

Next generation of electric devices will benefit from higher energy density storage systems

- Multi-valent == More electrons (Ca²⁺, Mg²⁺, Al³⁺, etc.)
- Large volumetric energy density == Smaller batteries
- Li-ion technology approaching fundamental limits
 - Safety, supply-chain constraints; limits on achievable energy densities

Why Ca?

- Superior volumetric capacity for Ca metal (~2077 Ah/l) than Li in graphite (~800 Ah/l)
- Ca is safer than Li, less constrained geopolitically
- Similar standard reduction potential for Ca (-2.87 V vs. SHE) vs. Li (-3.04 V)

Ca: Find thermodynamically stable cathodes with reasonable voltage, capacity, mobility & stability 16

Voltage, capacity, and rate: intercalation batteries

0 K thermodynamics: convex hull

E^{hull}: measure of **stability** of a given structure+composition combination (at 0 K)

NaSICONs: Polyanionic hosts with robust structural stability

- Na superionic conductors: NaSICONs, polyanionic hosts
 - Original composition: $Na_{1+x}Zr_2P_{3-x}Si_xO_{12}$; General composition: $Na_xM_2(ZO_4)_3$
- Polyanionic hosts: better structural stability with Na removal
 - Transition metal polyhedra usually connected via PO₄, SiO₄, or SO₄ groups

Theoretically, 4 moles of Na exchange possible in $Na_xV_2(PO_4)_3$

- x = 0 to 4
- 2 Na sites (Na1 and Na2)

Structure is rhombohedral or monoclinic depending on Na concentration

Conventional cell: 6 M₂(ZO₄)₃ formula units

Primitive cell: 2 formula units

NaSICONs: Polyanionic hosts with robust structural stability

Na⁺ (1.02 Å) and Ca²⁺ (1.0 Å) have similar ionic radii: can NaSICONs act as Ca-intercalation hosts? Preliminary experimental evidence is positive [Kim et al., *ACS Energy Lett.* **2020**, *5*, 3203–3211]

Charge neutrality constraints

Depending on polyanionic species: Ca concentration is constrained by possible oxidation states of the 3*d* transition metal (M), i.e., charge neutrality of the structure

E.g., consider $Ca_xM_2(SiO_4)_3$ with possible M oxidation states to be +2 (discharged) \leftrightarrow +4 (charged)

discharged

 \sim Ca₄M₂(SiO₄)₃

Similarly, for $Ca_xM_2(PO_4)_3$ and $Ca_xM_2(SO_4)3$,

7×10

 $Ca_2M_2(SiO_4)_3$

7×2 $Ca_{0.5}M_2(PO_4)_3$ $Ca_{2.5}M_2(PO_4)_3$ 6×7

charged

 $7 \times 1 \qquad Ca_0 M_2(SO_4)_3 \qquad Ca_1 M_2(SO_4)_3 \qquad 4 \times 7$

Enumerate Ca-vacancy configurations in primitive NaSICON with pymatgen¹ for a given M Repeat process for M = Ti, V, Cr, Mn, Fe, Co, and Ni (168 structures)

Perform SCAN+U calculations to estimate ground state configurations, average voltage and stability

<u>https://pymatgen.org</u> Theoretical capacities: PO_4 (255-270 mAh/g) > SiO_4 (225-240) \gg SO₄ (130-140)

1×7

Average voltages: Co and Ni are highest across polyanionic groups

Calculated with strongly constrained and appropriately normed (SCAN)+U

Monotonic increase in average voltage across Ti \rightarrow Ni for PO₄ and SiO₄

Consistent with standard reduction potentials

 PO_4 voltages > SiO_4

- Inductive effect
- Also responsible for SO₄ > PO₄ in Mn, Co and Ni

"Local" minima in voltage trends for Cr and Fe SO₄

 Stability of Cr³⁺ and Fe³⁺ states

Voltage×capacity: PO₄ may be optimal

Phosphates and sulfate Ca-NaSICONs: likely to be stable

E^{hull} based on 0 K DFT calculations of all available "ordered" structures (~250) in ICSD

All charged and discharged silicates unstable: unsuitable for Ca-cathodes Several $M_2(SO_4)_3$ (M = Ti, V, Cr, Mn, and Fe) are stable: consistent with experimental synthesis

 $Ca_{0.5}Mn_2(PO_4)_3$ and $Ca_{2.5}Mn_2(PO_4)_3$ stable: promising candidate! Other candidates: $Ca_xV_2(PO_4)_3$, $Ca_xMn_2(SO_4)_3$, and $Ca_xFe_2(SO_4)_3$

Calculated with SCAN+ U^{23}

Migration barriers: 3 candidates

Migration barriers: 3 candidates

Voltage, stability and mobility screening of the NaSICON chemical space: 3 candidates

• V-phosphate, Mn-sulfate, and Fe-sulfate

Deep dives Constructing MLIPs

11-component Li-based disordered rocksalts

26

Li-excess disordered rocksalts are an important class of Li-ion cathodes

Classical Li-ion cathodes: "layered" oxides (or "ordered" rocksalt) Oxygen: Face-centered-cubic lattice Cation-lattice: "Ordered" face-centered-cubic Cation arrangement: distinct Li and transition metal (TM) layers

Disordered rocksalts: no distinct long-range order in cation sub-lattice Usually not electrochemically active at LiTMO₂ composition

Li-excess disordered rocksalts are an important class of Li-ion cathodes

Li-excess disordered rocksalts (DRX): electrochemically active

Important class of advanced Li-ion cathodes Distinctive features:

- Anionic redox: high voltages
- Li-transport via percolation channels
- Requires Li-excess, and often several TMs
- Usually operate at low rates and for low cycles

Modelling DRX is non-trivial: use MLIPs?

Large configurational space: several different arrangements of Li and TM

Large supercell size: for breaking long-range order

Requires computations quicker than DFT but as accurate for screening

Five MLIPs considered over a 10842 DFTcalculated dataset

LiTMO₂ + TMO₂ compositions; TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and/or Cu; 11-components "Atom-centered" MLIPs considered

AENET is best for total energy predictions

AENET performs best when dataset size is good enough, MTP reasonable at small datasets

MTP is best for atomic force predictions

MTP predicts forces with best accuracy at or above 6000 dataset size

Ease of training: AENET at low "epochs"

Ease of training: AENET at low "epochs"

AENET training time increases significantly with higher epochs

AENET gives best total energy predictions and is not too hard to train at low epochs: how does it perform in predicting electrochemical properties? Lowest training errors at 3300 epochs: training time increases by 6x

Training error decrease saturates after 2300 epochs

Voltage predictions: AENET is reasonable

AENET trained at 2300 epochs versus DFT-calculated total energies in ordered, layered LiTMO₂ and TMO₂

- Higher errors in TMO₂ expected: lower amount of TMO₂ data in training dataset
- Percentage errors are low (0.55% for LiTMO₂ and 2.12% for TMO₂)

Voltage predictions: AENET has an average error of 10%

- MAE: 0.34 V; RMSE: 0.375 V
- There is compounding of error from LiTMO₂ and TMO₂
- Largest errors in LiFeO₂ and LiTiO₂ (~17%)

Scope for improvement with more training data

• Qualitative trends may be useful for screening

Voltage predictions: AENET is reasonable

AENET trained at 2300 epochs versus DFT-calculated total energies in ordered, layered LiTMO₂ and TMO₂

- Higher errors in TMO₂ expected: lower amount of TMO₂ data in training dataset
- Percentage errors are low (0.55% for LiTMO₂ and 2.12% for TMO₂)

Voltage predictions: AENET has an average error of 10%

• MAE: 0.34 V; RMSE: 0.375 V

MLIPs, if carefully constructed, are useful for modelling complex configurational spaces!

Conclusions

- Removing material bottlenecks is important for improving performance of energy devices
 - Need better, safer, and cheaper batteries
- Ca-containing NaSICON frameworks screened
 - 3 candidates: $Ca_xV_2(PO_4)_3$, $Ca_xMn_2(SO_4)_3$ and $Ca_xFe_2(SO_4)_3$
- Modelling a configurationally complex DRX space with MLIPs
 - AENET: good for total energy predictions (statics)
 - MTP: good for atomic force predictions (dynamics)

Ca-NaSICON screening:

"Exploration of NaSICON frameworks as calcium-ion battery cathodes", D.B. Tekliye, A. Kumar, X. Weihang, T.D. Mercy, P. Canepa, and <u>G.Sai Gautam</u>, Chem. Mater. 2022, 34, 10133-10143

MLIP construction:

"Constructing and evaluating machine-learned interatomic potentials for Li-based disordered rocksalts", V. Choyal, N. Sagar, and G. Sai Gautam, arXiv 2304.01650 (2023). Under review

11-component Li-based disordered rocksalts