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Materials science is data limited
Several key material properties that govern performance 
in applications have limited data

• ‘Small’ datasets (< 104 datapoints)
• Ionic mobilities, defect formation energies, adsorption energies,…

• Limits application of deep learning (DL) frameworks

2

https://www.differencebetween.com/difference-between-point-defect-and-line-defect/ Devi et al., npj Comput. Mater. 2022
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Transfer learning: efficiently use DL frameworks on small datasets
• Pre-train (PT) on ’large’ dataset, fine-tune (FT) on ‘small’ dataset

Do et al., Korean J. Radiol. 2020
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Transfer learning: efficiently use DL frameworks on small datasets
• Pre-train (PT) on ’large’ dataset, fine-tune (FT) on ‘small’ dataset

How useful is transfer learning in materials science?
• Optimal ways to use? 
• Ways to generate ‘generalized’ models?



Handles to consider
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Dataset(s)
• What, how, how many?

Architecture
• Graph neural network

Strategy
• FT techniques in pair-wise PT/FT models
• Multi-property PT (MPT) models

(Learning) Hyperparameters
• Data sampling
• Learning rate
• Number of datapoints during PT, FT

Frozen

Unfrozen

https://en.wikipedia.org/ 

https://en.wikipedia.org/
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Let’s take a detailed look at the handles

https://en.wikipedia.org/


Computational

Experimental

Computational

7 datasets (Matminer)

71. Ward et al., Comput. Mater. Sci. 152, 60–69 (2018). 

Dataset description Abbreviation Size
Piezoelectric modulus PZ 941
Dielectric constant DC 1,056
Highest frequency of optical 
phonon peak PH 1,265

Experimental band gap EBG 4,604
Average shear modulus GV 10,987
Band gap BG 106,113
Formation energy FE 132,752

‘Scratch’ models
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81. Ward et al., Comput. Mater. Sci. 152, 60–69 (2018). 

Dataset description Abbreviation Size
Piezoelectric modulus PZ 941
Dielectric constant DC 1,056
Highest frequency of optical 
phonon peak PH 1,265

Experimental band gap EBG 4,604
Average shear modulus GV 10,987
Band gap BG 106,113
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‘Scratch’ models

Normal



Atomistic line graph neural network (ALIGNN)

91. Choudhary and DeCost, npj Comput. Mater. 7, 185 (2021). 

ALIGNN: Takes atoms, bonds, and bond angles into account

Bond graphs: atoms are nodes, bonds are edges; 2-body layers
Line graphs: bonds-nodes, bond angles-edges; 3-body layers
Communication: edge-gated graph convolution (E-GGC)

ALIGNN generalizes well ‘out-
of-distribution’2

2. Omee et al., arXiv 2401.08032 (2024). 



FT strategies
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Additional 
flexibility at 
head



B
G

-F
E 

(1
)

B
G

-F
E 

(6
)

B
G

-D
C

 (
1)

B
G

-D
C

 (
6)

FE
-B

G
 (

1)

FE
-B

G
 (

6)

3

2

1

0

1

R
2

Sc
or

es

Learning rate
10 3

10 4

10 5

B
G

-F
E

FE
-B

G

D
C

-B
G

PH
-G

V

0.2

0.0

0.2

0.4

R
2

Sc
or

es Sampling technique
Equal sampling
Weighted sampling
Random sampling

(a) (b)

Hyperparameters

11

Sampling: random sampling is best

PT-FT: Pre-train dataset/Fine-tune dataset

BG: Band gap
FE: Formation energy
DC: Dielectric constant
PH: Phonons

Random is better

Learning rate: higher is better
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Different number of frozen layers

Higher learning rate: more re-training of 
parameters

10-3 optimal; validation losses high at 10-2
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Let’s look at pair-wise model performances in more detail
• Influence of PT/FT dataset size
• FT strategy
• 7×6 pair-wise models



More FT data: better

13BG: Band gap; FE: Formation energy; DC: Dielectric constant; MAE: Mean absolute error

R2

MAE

Dataset name; Dataset size
Scratch models Pair-wise PT-FT models

Test scores (5 trials)
• PT-FT models are consistently better than scratch models

• More FT data: better models (both scratch and PT-FT)

• Efficiency of PT-FT learning better than scratch (lower dataset sizes)

PT-FT dataset name; FT Dataset size



More PT data: non-monotonic 
improvement

14BG: Band gap; FE: Formation energy; DC: Dielectric constant; GV: Shear modulus; PH: Phonons; EBG: Experimental band gap

Scratch

Better than scratch

Formation energy as PT 

• Increasing dataset size: non-monotonicity

• Best models at 100K

• Always better than scratch

FT dataset name
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Formation energy as PT 

• Increasing dataset size: non-monotonicity

• Best models at 100K
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FT dataset name

Band gap as PT 

• Non-monotonicity

• Best models at 50K for non-
correlated; 100K for correlated

• (Almost) always better than scratch



More PT data: non-monotonic 
improvement

16BG: Band gap; FE: Formation energy; DC: Dielectric constant; GV: Shear modulus; PH: Phonons; EBG: Experimental band gap

Formation energy as PT 

• Increasing dataset size: non-monotonicity

• Best models at 100K

• Always better than scratch

FT dataset name

Band gap as PT 

• Non-monotonicity

• Best models at 50K for non-
correlated; 100K for correlated

• (Almost) always better than scratch

Larger PT data: generally better despite non-monotonic improvement

If FT property is correlated, more PT data helps



FT strategy: unfreezing all is best

17

Unfreezing all layers: maximal degree of freedom

Unfreezing last layer: minimal degree of freedom

Models need significant retraining

Creating foundational models: difficult in 
pair-wise

2-body and 3-body layers are large 
contributors to ALIGNN

BG: Band gap; FE: Formation energy; DC: Dielectric constant



7×6 combinations of pair-wise models

18R2

MAE
Test scores

GV: Shear modulus; PH: Phonons: FE: Formation energy; BG: Band gap
PZ: Piezoelectric modulus; DC: Dielectric constant; EBG: Experimental band gap

FT dataset+size
PT dataset (941)

Best model

Pair-wise models: 
better than scratch
• Average increase in 

R2: 25%
• Average decrease 

in MAE: 16%

Best models: GV, 
PH, FE (R2 > 0.75)

Average models: 
BG, DC, EBG

Specific PT 
property: little 
influence on FT

No symmetry



7×6 combinations of pair-wise models
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MAE
Test scores

GV: Shear modulus; PH: Phonons: FE: Formation energy; BG: Band gap
PZ: Piezoelectric modulus; DC: Dielectric constant; EBG: Experimental band gap

FT dataset+size
PT dataset (941)

Best model

Pair-wise models: 
better than scratch
• Average increase in 

R2: 25%
• Average decrease 

in MAE: 16%

Best models: GV, 
PH, FE (R2 > 0.75)

Average models: 
BG, DC, EBG

Specific PT 
property: little 
influence on FT

No symmetry

What about MPT (or more generalizable) models?

At capped dataset size, specific PT property is a weak handle; Normal distribution is better

Pair-wise transfer learning has significant utility



MPT: (Beta) Generalized models
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Inspiration from literature: multi-task crystal graph convolutional neural network1

1. Sanyal et al., arXiv 1811.05660 (2018)

• Build cumulative dataset: 132,270 points
• Remove overlaps

• Add task-dependent prediction heads with a one-hot encoded vector
• Presence/absence of property

• Modify loss function

• PT on all (but one) property, FT on one property

ℒ =
1
𝑁
෍
𝑖=1

𝑁

𝑦𝑝𝑖 − 𝑦𝑡𝑖 𝛿𝑖

MPT models can generalize dependence of several properties on the structure



MPT: better on-average than PT-FT
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Scratch

Better R2 
than 
scratch

FT dataset + size

GV: Shear modulus; PH: Phonons; FE: Formation energy; BG: Band gap; DC: Dielectric constant; EBG: Experimental band gap

MPT better than PT(best-size) in 3/6 on R2
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Scratch

Better R2 
than 
scratch

Better 
MAE than 
scratch

FT dataset + size

GV: Shear modulus; PH: Phonons; FE: Formation energy; BG: Band gap; DC: Dielectric constant; EBG: Experimental band gap

MPT better than PT(best-size) in 3/6 on R2

    in 4/6 on MAE
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Scratch

Better R2 
than 
scratch

Better 
MAE than 
scratch

FT dataset + size

GV: Shear modulus; PH: Phonons; FE: Formation energy; BG: Band gap; DC: Dielectric constant; EBG: Experimental band gap

MPT better than PT(best-size) in 3/6 on R2

    in 4/6 on MAE
Negative transfer in FE with MPT
• Due to exclusion of large number of datapoints



MPT: better on out-of-domain than 
PT-FT

24

Model Test R2 Test MAE

Scratch 0.635 0.148

MPT (all seven datasets) 0.671 0.125

FE(100K) 0.670 0.127

BG(50K) 0.617 0.138

PH(1256) 0.628 0.145

GV(10,987) 0.626 0.143

EBG(2,481) 0.619 0.143

Band gap of 2D materials (1,103 datapoints) from JARVIS-DFT1

1. Choudhary et al. npj Comput. Mater. 6, 173 (2020). 
FE: Formation energy; BG: Band gap; GV: Shear modulus; 
EBG: Experimental band gap

On average, MPT is 6% and 10% better on R2 and MAE than PT-FT
Closest performer to MPT is FE: largest dataset within MPT
MPT models: may generalize quite well with more properties



Hands-on session?

25



Predict phonon modes using 
scratch and fine-tuned models

26



Summary

• Materials science is limited by data availability on key properties
• Transfer learning as a path to build robust models

• Optimal PT-FT strategies
• Larger PT/FT dataset generally helps
• Specific PT property: weak handle
• More degrees of freedom in model: better

• MPT: a path to generalized models
• On-average better than scratch and best PT-FT
• Generalizes well out-of-distribution

27saigautamg@iisc.ac.in; https://sai-mat-group.github.io; https://github.com/sai-mat-group   
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