

Transfer learning for materials science

Sai Gautam Gopalakrishnan¹, Keith Tobias Butler², Reshma Devi¹, and Pritam Ghosh¹

¹Materials Engineering, Indian Institute of Science

²Chemistry, University College London

saigautamg@iisc.ac.in; https://sai-mat-group.github.io

Jan 8, 2025

Materials science is data limited

Several key material properties that govern performance in applications have limited data

- 'Small' datasets (< 10⁴ datapoints)
 - Ionic mobilities, defect formation energies, adsorption energies,...
- Limits application of deep learning (DL) frameworks

Devi et al., npj Comput. Mater. 2022

https://www.differencebetween.com/difference-between-point-defect-and-line-defect/

https://sites.psu.edu/

bridge

Materials science is data limited

- Several key material properties that govern performance in applications have limited data
 - 'Small' datasets (< 10⁴ datapoints)
 - Ionic mobilities, defect formation energies, adsorption energies,...
 - Limits application of deep learning (DL) frameworks

Transfer learning: efficiently use DL frameworks on small datasets

• Pre-train (PT) on 'large' dataset, fine-tune (FT) on 'small' dataset

Materials science is data limited

- Several key material properties that govern performance in applications have limited data
 - 'Small' datasets (< 10⁴ datapoints)
 - Ionic mobilities, defect formation energies, adsorption energies,...
 - Limits application of deep learning (DL) frameworks

Transfer learning: efficiently use DL frameworks on small datasets

• Pre-train (PT) on 'large' dataset, fine-tune (FT) on 'small' dataset

How useful is transfer learning in materials science?

- Optimal ways to use?
- Ways to generate 'generalized' models?

Handles to consider

- Dataset(s)
- What, how, how many?
- Architecture
- Graph neural network

- Strategy
- FT techniques in pair-wise PT/FT models
- Multi-property PT (MPT) models

(Learning) Hyperparameters

- Data sampling
- Learning rate
- Number of datapoints during PT, FT

Handles to consider

- Dataset(s)
- What, how, how many?
- Architecture
- Graph neural network

Let's take a detailed look at the handles

(Learning) Hyperparameters

- Data sampling
- Learning rate
- Number of datapoints during PT, FT

7 datasets (Matminer)

Dataset description	Abbreviation	Size		
Piezoelectric modulus	PZ	941		
Dielectric constant	DC	1,056		Computational
Highest frequency of optical phonon peak	PH	1,265		
Experimental band gap	EBG	4,604	<u> </u>	Experimental
Average shear modulus	GV	10,987		
Band gap	BG	106,113		Computational
Formation energy	FE	132,752		

1. Ward et al., Comput. Mater. Sci. 152, 60-69 (2018).

1. Ward et al., Comput. Mater. Sci. 152, 60-69 (2018).

Atomistic line graph neural network (ALIGNN)

ALIGNN: Takes atoms, bonds, and bond angles into account

Bond graphs: atoms are nodes, bonds are edges; 2-body layers Line graphs: bonds-nodes, bond angles-edges; 3-body layers Communication: edge-gated graph convolution (E-GGC)

1. Choudhary and DeCost, npj Comput. Mater. 7, 185 (2021).

ALIGNN generalizes well 'outof-distribution'²

2. Omee et al., arXiv 2401.08032 (2024). 9

Hyperparameters

Different number of frozen layers

PT-FT: Pre-train dataset/Fine-tune dataset

- BG: Band gap
- FE: Formation energy
- DC: Dielectric constant
- PH: Phonons

Higher learning rate: more re-training of parameters

10⁻³ optimal; validation losses high at 10⁻²

Hyperparameters

Let's look at pair-wise model performances in more detail

- Influence of PT/FT dataset size
- FT strategy
- 7×6 pair-wise models

More FT data: better

BG: Band gap; FE: Formation energy; DC: Dielectric constant; MAE: Mean absolute error

3

0.0

More PT data: non-monotonic improvement

FT dataset name

- Formation energy as PT
- Increasing dataset size: non-monotonicity
- Best models at 100K
- Always better than scratch

BG: Band gap; FE: Formation energy; DC: Dielectric constant; GV: Shear modulus; PH: Phonons; EBG: Experimental band gap 14

More PT data: non-monotonic improvement

- Formation energy as PT
- Increasing dataset size: non-monotonicity
- Best models at 100K
- Always better than scratch

Band gap as PT

- Non-monotonicity
- Best models at 50K for noncorrelated; 100K for correlated
- (Almost) always better than scratch

BG: Band gap; FE: Formation energy; DC: Dielectric constant; GV: Shear modulus; PH: Phonons; EBG: Experimental band gap 15

More PT data: non-monotonic improvement

Larger PT data: generally better despite non-monotonic improvement

If FT property is correlated, more PT data helps

FT strategy: unfreezing all is best

BG: Band gap; FE: Formation energy; DC: Dielectric constant

7×6 combinations of pair-wise models

GV: Shear modulus; PH: Phonons: FE: Formation energy; BG: Band gap PZ: Piezoelectric modulus; DC: Dielectric constant; EBG: Experimental band gap Pair-wise models: better than scratch

- Average increase in R²: 25%
- Average decrease in MAE: 16%
- 0.8 Best models: GV, PH, FE (R² > 0.75)
- 0.6 Average models: BG, DC, EBG
- 0.4 Specific PT property: little influence on FT

0.2

Best model

0.0

1.0

No symmetry

 \mathbb{R}^2

FT dataset+size PT dataset (941)

18

7×6 combinations of pair-wise models

Pair-wise transfer learning has significant utility

MPT: (Beta) Generalized models

Inspiration from literature: multi-task crystal graph convolutional neural network¹

MPT models can generalize dependence of several properties on the structure

- Build cumulative dataset: 132,270 points
 - Remove overlaps
- Add task-dependent prediction heads with a one-hot encoded vector
 - Presence/absence of property
- Modify loss function
- PT on all (but one) property, FT on one property
- 1. Sanyal et al., arXiv 1811.05660 (2018)

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} |y_p^i - y_t^i| \delta^i$$

MPT: better on-average than PT-FT

MPT better than PT(best-size) in 3/6 on R²

MPT: better on-average than PT-FT

MPT better than PT(best-size) in 3/6 on R² in 4/6 on MAE

GV: Shear modulus; PH: Phonons; FE: Formation energy; BG: Band gap; DC: Dielectric constant; EBG: Experimental band gap 22

MPT: better on-average than PT-FT

MPT better than PT(best-size) in 3/6 on R² in 4/6 on MAE Negative transfer in FE with MPT

• Due to exclusion of large number of datapoints

MPT: better on out-of-domain than PT-FT

Band gap of 2D materials (1,103 datapoints) from JARVIS-DFT¹

Model	Test R ²	Test MAE
Scratch	0.635	0.148
MPT (all seven datasets)	0.671	0.125
FE(100K)	0.670	0.127
BG(50K)	0.617	0.138
PH(1256)	0.628	0.145
GV(10,987)	0.626	0.143
EBG(2,481)	0.619	0.143

On average, MPT is 6% and 10% better on R² and MAE than PT-FT Closest performer to MPT is FE: largest dataset within MPT MPT models: may generalize quite well with more properties

FE: Formation energy; BG: Band gap; GV: Shear modulus; EBG: Experimental band gap

1. Choudhary et al. **npj Comput. Mater.** *6*, 173 (2020)24

Hands-on session?

Predict phonon modes using scratch and fine-tuned models

Summary

- Materials science is limited by data availability on key properties
 - Transfer learning as a path to build robust models
- Optimal PT-FT strategies
 - Larger PT/FT dataset generally helps
 - Specific PT property: weak handle
 - More degrees of freedom in model: better
- MPT: a path to generalized models
 - On-average better than scratch and best PT-FT
 - Generalizes well out-of-distribution