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Why interatomic potentials?
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Interatomic potentials: simulate ‘large’ length-scale or ‘long’ time-scale phenomena

• Classical force-fields

• Length: ~nm, Time: ~ns (with molecular dynamics)

• Interfaces, diffusivities, rapid phase transitions (→phase diagrams)

• Underlying structure can change (vs. lattice models)
• Computational cost-accuracy trade-off

Interatomic potentials model the potential energy surface of a given material
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Miao and Yuan, Phys. Chem. Chem. Phys. 25, 7487-7495 (2023)
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Tipeev et al., J. Phys. Chem. C 122, 28884-28894 (2018)



Why machine learned interatomic 
potentials (MLIPs)?
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Classical force-fields have difficulties in modelling ‘complex’ potential energy surfaces

• Diversity of species and bonding environments

• Limited accuracy vs. DFT

Mishin, Acta Mater. 214, 116980 (2014)

MLIPs: Flexible functional form

• Can handle diversity of species and bonding environments

• Introduce permutation, rotation invariance

• Improved accuracy vs. DFT compared to classical force-fields

Kocer et al., J. Chem. Phys. 150, 154102 (2019)

Bartók and Csányi, Int. J. Quantum Chem. 116, 1049 (2016)

Fingerprint a local 

environment around 

a reference atom

+ machine-learning 

model

= (classic) MLIP



How do classical MLIPs work?

4Mishin, Acta Mater. 214, 116980 (2014)

Define a 

neighborhood of 

interest for each 

atom

Fingerprint the 

local environment

Weights, biases, 

and 

hyperparameters

PES: Potential 

energy surface

= Sum of atomic 

energies

Typically MLIPs are trained on total energies, atomic forces, 

and lattice stresses of several different structures in a 

chemical space

Popular MLIPs:

• Artificial neural network potential (ANNP)

• Gaussian approximation potential (GAP)

• Moment tensor potential (MTP)

• Spectral neighbor analysis potential (SNAP)

Deringer et al., Adv. Mater. 31, 1902765 (2019)



Breakdown of classical MLIPs
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MLIP Moment tensor 

potential (MTP)

Spectral neighbor 

analysis potential 
(SNAP)

Or Quadratic SNAP 
(qSNAP)

Gaussian 

approximation 
potential (GAP)

Artificial neural 

network potential 
(ANNP)

Idea Many-body 

interactions 
represented via 
moment-tensors

Local atomic density 

projected on a 4D 
hypersphere

Local atomic density 

modelled via smooth 
overlap of atomic 
positions

Local environment 

as input layer in 
feed-forward neural 
network

Descriptor Moment tensors Bispectrum 

components

Weighted sum of 

Gaussians

Radial and angular 

distribution functions 
(or symmetry 
functions)

Training algorithm BFGS Linear Gaussian process L-BFGS

Basis functions Chebychev Hyperspherical 

harmonics

Gaussians, 

spherical harmonics

Chebychev

’Easy’ to train

‘Fast’ to run (CPUs)

Reasonably accurate on system trained

Don’t generalize well, ‘short-sighted’

Poor learning rate (need ‘large’ data)

Poor scaling with number of elements
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Let’s take a deeper look at MTP



Moment tensor potential
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𝑛𝑖  - atomic environment (within a cut-off radius) 

comprising of a reference atom, its neighbours, and 
their relative positions

𝑉: function invariant to permutations, rotations, and reflections

• Smooth with respect to exchange of atoms from neighborhood

Basis functions: written up to a maximum ‘level’ of 

‘contracted’ moment tensors

Radial component Angular component

Moment 

tensor:

lev𝑀𝜇,𝑣 = 2 + 4𝜇 + v

Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)

Expanded via radial basis functions: pair-wise Expanded via tensors: many-body

lev(M1,2:𝑀0,2) = (2 + 4 + 2) + (2 + 0 + 2) = 12

Weights to be fit
Chebychev polynomials

⨉smooth cut-off function

𝜈 = 0 → Scalar

𝜈 = 1 → Vector;

𝜈 = 2 → Tensor;

Weights to be fit



MTP: fitting
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Set of k configurations in the 

training set

𝜃: parameters to be fit (𝜉, 𝑐) qm: DFT or other quantum 

mechanical tools 

Energies, forces, and stresses considered within loss function Hyperparameters

Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)

https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf 

https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf


MTP: fitting
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Set of k configurations in the 

training set

𝜃: parameters to be fit (𝜉, 𝑐) qm: DFT or other quantum 

mechanical tools 

Energies, forces, and stresses considered within loss function Hyperparameters

Novikov et al. Mach. Learn.: Sci. Technol. 2, 025002 (2021)

https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf 

Once MTP is fit, can be used for both static and dynamic runs

• Using ‘LAMMPS’ for example

Also has ability to perform active learning during predictions

• Using an ‘extrapolation grade’

• Structures outside a confidence interval can be calculated with density functional theory and 

the potential retrained

https://www.skoltech.ru/app/data/uploads/2019/09/THESIS_FINAL.pdf


MTP in action
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Predicting Li migration energies for cathode coating materials

Composition MTP

𝑬𝒂 (eV)

Experimental 

𝑬𝒂 (eV)

Li3Sc2(PO4)3 0.62 ± 0.04 0.65

Li2B6O9F2 0.79 ± 0.10 0.92

LiCl 1.11 ± 0.13 0.83

Wang et al., Chem. Mater. 32, 3741–52 (2020)

Wang et al., J. Mater. Chem. A 10, 19732-19742 (2022)

Modelling solid electrolyte||anode interfaces

Simulating Si||SiO2 interface

Zongo et al., npj Comput. Mater. 10, 218 (2024)



MTP in action
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Predicting Li migration energies for cathode coating materials

Composition MTP

𝑬𝒂 (eV)

Experimental 

𝑬𝒂 (eV)

Li3Sc2(PO4)3 0.62 ± 0.04 0.65

Li2B6O9F2 0.79 ± 0.10 0.92

LiCl 1.11 ± 0.13 0.83

Wang et al., Chem. Mater. 32, 3741–52 (2020)

Wang et al., J. Mater. Chem. A 10, 19732-19742 (2022)

Modelling solid electrolyte||anode interfaces

Simulating Si||SiO2 interface

Zongo et al., npj Comput. Mater. 10, 218 (2024)How to mitigate some of the cons of ‘classical’ MLIP? → Use graphs



Recap: graphs and messages
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Message passing is quite useful
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With message passing 

(𝑡: iteration)

Atom-centered 

representation (without 

message passing)

Message passing helps learn long-range interactions

• Effective interaction from 𝑡 × 𝑟𝑐𝑢𝑡

• Computationally efficient

• Eliminates unnecessary neighbors

Figure: Batatia et al.,, arXiv, 2205.06643v2 (2022)

MLIPs incorporating message 

passing should have higher 

learning rates and describe longer 

range interactions better



Invariance vs. equivariance
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https://datascience.stackexchange.com/questions/16060/what-is-the-difference-between-equivariant-to-translation-and-invariant-to-tr 

Rotated dog

Dog

Batzner et al., Nat. Commun. 13, 2453 (2022)

In materials parlance:

• Scalars (energies) are invariant

• Vectors (forces) and tensors 

(stresses) are equivariant

• Several useful material properties 

are equivariant

E(3): Translation, Rotation, Reflection

https://datascience.stackexchange.com/questions/16060/what-is-the-difference-between-equivariant-to-translation-and-invariant-to-tr


Introducing equivariance: radial basis 
and spherical harmonics
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State of a node at any iteration (𝑡) in a graph: 𝜎𝑖
𝑡

= 𝑟𝑖, 𝜃𝑖, ℎ𝑖
𝑡

Position Elemental Learnable features

ℎ𝑖
𝑡

 updated through messages (𝑚𝑖
𝑡

) via an update function (𝑈𝑡(𝜎𝑖, 𝑚𝑖
𝑡

))

Obtained via ‘pooling’ of neighboring 𝜎𝑖
𝑡

 and 𝜎𝑗
𝑡 𝜎𝑖

𝑡+1
= 𝑟𝑖, 𝜃𝑖, 𝑈𝑡 𝜎𝑖

𝑡
, 𝑚𝑖

𝑡

Bake equivariance within 𝑚𝑖
𝑡

 by expanding with a basis that is equivariant

𝑚𝑖,𝐿
𝑡

𝑄 ⋅ 𝑟1, 𝑟2, ⋯ , 𝑟𝑁 = 𝐷𝐿 𝑄 𝑚𝑖,𝐿
𝑡

𝑟1, 𝑟2, ⋯ 𝑟𝑁

Symmetry level of equivariance

Arbitrary rotation Wigner 𝐷-matrix

Possible basis: one-particle functions, 𝜙𝑛𝑙𝑚 𝑟𝑗𝑖 = 𝑅𝑛𝑙 𝑟𝑗𝑖 𝑌𝑙
𝑚 Ԧ𝑟𝑗𝑖

Radial basis: 

Bessel/Chebychev 

polynomials with 

smooth cut-off

Translational 

equivariance

Legendre 

polynomials 

angular 

momenta

Rotational and 

reflectional 

equivariance
https://en.wikipedia.org/wiki/Spherical_harmonics arXiv 2205.06643v2 (2022); Phs. Rev. B  99, 014104 (2019)

https://en.wikipedia.org/wiki/Spherical_harmonics


Neural equivariant interatomic potential (NequIP): 
equivariance + message passing

Based on using deep, graph neural networks to construct 

interatomic potentials

Every atom has a feature vector of different orders (scalars, 

vectors, and tensors)

Batzner et al., Nat. Commun. 13, 2453 (2022) 16

Convolution filters:

Spherical harmonics



NequIP: code blocks

17Batzner et al., Nat. Commun. 13, 2453 (2022)

Self-Interaction Layer: Mix atomic features having same 

order and mirror parity, reduces dimensionality

Convolution Layer: Rotational equivariance

Concatenation: Recombines feature vectors to form new 

feature vectors



NequIP in action
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Simulations of glassy Li4P2O7

Batzner et al., Nat. Commun. 13, 2453 (2022)

Simulations of amorphous LiPON||Li metal interface

Seth et al., arXiv, 2409.06242 (2024)
GNoME materials discovery pipeline

Merchant et al., Nature 624, 80-85 (2023)



Step back and questions?

• Classical MLIPs: atom-centered, different descriptors 
to fingerprint local environment, linear/non-linear in 
energy (and forces/stresses)
• MTP is linear

• Generally invariant

• Equivariance and message passing seem important
• Graph networks for message passing

• Radial basis and spherical harmonics for equivariance

• Generally encode 2-body information (bonds)

• Questions?

19



Towards generalization: Atomic 
cluster expansion (ACE)
• Are classical and message passing frameworks 

fundamentally different in construction?

• Are there systematic ways to generate better MLIPs?
• Or is it just feature engineering or hyperparameter 

optimization?

• Can MLIPs be foundational?
• One MLIP for the entire periodic table and the combinations 

of elements?

• Replace classical computations with swifter, accurate 
models?

20Need to visit the ACE formalism



ACE: basics
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Energy of a collection of atoms can be written (arbitrarily as),

𝐸 = 𝑉0 + 

𝑖

𝑉 1 𝑟𝑖 +
1

2


𝑖𝑗

𝑉 2 𝑟𝑖, 𝑟𝑗 +
1

3!


𝑖𝑗𝑘

𝑉 3 𝑟𝑖, 𝑟𝑗, 𝑟𝑘 +
1

4!


𝑖𝑗𝑘𝑙

𝑉 4 𝑟𝑖, 𝑟𝑗, 𝑟𝑘, 𝑟𝑙 + ⋯

The total energy can be decomposed into atomic contributions,

𝐸𝑖 = 𝑉 1 𝑟𝑖 +
1

2


𝑗

𝑉 2 𝑟𝑖, 𝑟𝑗 +
1

3!


𝑗𝑘

𝑉 3 𝑟𝑖, 𝑟𝑗, 𝑟𝑘 +
1

4!


𝑗𝑘𝑙

𝑉 4 𝑟𝑖, 𝑟𝑗, 𝑟𝑘, 𝑟𝑙 + ⋯

Extremely difficult to compute, 𝐾 + 1 term costs ≈ 𝑁𝐾 computational time (𝑁-average # of neighbors)

Need mathematical tricks to make computations tractable → introduce alternate basis functions

Energies depend on bonds (relative positions of atoms) more than absolute positions

• Introduce particle basis → orthogonal and complete by construction

• Group of bonds → cluster → expand energies based on different clusters

Drautz, Phys. Rev. B 99, 014104 (2019)

Φ𝛼𝜈 = 𝜙𝜈1
𝑟𝑗1𝑖 𝜙𝜈2

𝑟𝑗2𝑖 ⋯ 𝜙𝜈𝐾
𝑟𝑗𝐾𝑖

𝛼 is a cluster consisting of 𝐾 bonds

Each 𝜙 depends on a distinct bond length

𝜙 → expanded with radial basis and spherical harmonics

𝐸𝑖 𝜎 = 𝐽0 + 

𝛼𝜈

𝐽𝛼𝜈Φ𝛼𝜈 𝜎 𝜎→ configuration of atoms

𝜈 → collection of bonds within cluster 𝛼

We haven’t solved the computational problem yet, merely transferred it to a 𝜙 basis!



Solving computational complexity: 
product basis

22

Introduce an atomic basis for each atom, i.e., a density projection

Slightly modify definition of particle basis, 𝜙𝑘𝜈 = 𝑅𝑘𝑐𝑙 𝑟𝑖𝑗 𝑌𝑙
𝑚 𝑟𝑖𝑗 𝑇𝑘𝑐 𝜃𝑖, 𝜃𝑗  

𝑘: uncoupled indices (element identity and position)

𝑐, 𝑙, 𝑚: coupled indices (element agnostic, capture of bonds, ensures equivariance)

Drautz, Phys. Rev. B 99, 014104 (2019); Batatia et al., arXiv, 2205.06643v2 (2022)

𝐴𝑖,𝑘𝜈 = 

𝑗𝜖Ν(𝑖)

𝜙𝑘𝜈 Counts all bonds within a cut-off

Higher body interactions can now be captured via products of 𝐴, i.e., a product basis

𝐴𝑖,𝑘𝒗 = ෑ
𝜁=1

𝜈

𝐴𝑖,𝑘𝜈𝜁 𝒗 = (𝜈1, 𝜈2, ⋯ , 𝜈𝜈)

Linear scaling!

𝑁𝐾 scaling

Hold on, we aren’t done yet!



Change of basis: 
symmetrized basis

23Drautz, Phys. Rev. B 99, 014104 (2019); Batatia et al., arXiv, 2205.06643v2 (2022)

Final change-of-basis: add equivariance to product basis

• Result is the symmetrized basis

Atomic energy can written as a linear expansion of 

symmetrized basis

• (Linear) ACE

In practice,

Determines which set of 𝐴-products are equivariant

𝐸𝑖 𝜎 = 

𝜂,𝑘

𝜔𝑘𝜂𝐿𝐵𝑖,𝑘𝜂,𝐿𝑀 Learnable weights

This linear summation of energy → surprisingly similar to MTP!

All classical MLIPs can be derived as special cases of ACE

• Choice of basis, equivariance, and body-order

Message passing?



Message passing + ACE: MACE

24Batatia et al., arXiv, 2205.06643v2 (2022)

Instead of the total energy, define linear 

summation of symmetrized basis as the 

message at iteration 𝑡

Update learnable features:

Read-out energies:

Multi-ACE (MACE): Message passing on ACE symmetrized basis with linear update functions and 

non-linear readout functions

Any message passing MLIP can be considered a subset of MACE!

• Choice of basis+update functions, body-order and equivariance



Comparison of message passing 
networks

25Batatia et al., arXiv, 2205.06643v2 (2022)

𝜈 = 1: Pairs (or 2 body-order) included

Total correlation order ~ 𝜈 × 𝑇



MACE: higher body-order is 
important

26Batatia et al., NeurIPS (2022)

Higher body-order 

changes the order (slope) 

of learning rate

• Faster learning with 

fewer datapoints by 

including body-order 

up to 4

Equivariance leads to shift 

in learning rate, not 

changing the slope

• At high body-order

Equivariance can lead to 

shift in slope of learning 

rate at small body order

• Effect of equivariance 

saturates at the vector-

level

Dataset: rMD17



MACE: quicker learning with fewer 
layers

27Batatia et al., NeurIPS (2022)

Dataset: 3BPA

Fewer (message passing) layers: faster energy/force evaluations, faster molecular dynamics



MACE: quicker learning with fewer 
layers

28Batatia et al., NeurIPS (2022)

Dataset: 3BPA

Fewer (message passing) layers: faster energy/force evaluations, faster molecular dynamics
Given MACE provides a theoretical basis for combining message passing, equivariance 

and high body-order within MLIPs: can foundational models be constructed?



Foundational models: MACE-MP-0

29Batatia et al., arXiv, 2401.00096v2 (2024)

Trained on Materials Project trajectory 

dataset (~1.5M structures)

• Stable performance on 30 different 

property predictions/application areas

• Stable dynamics in solids, liquids, and 

gases

• GPU; limited system size

https://matbench-discovery.materialsproject.org/ 

Many more to come… 

https://matbench-discovery.materialsproject.org/


MACE in action

30

Using MACE-MP-0 as a pre-screening 

tool in battery cathode identification

Singh et al., ACS Appl. Electron. Mater. 6, 7065-7074 

(2024)

Modelling zeolites (using MACE-ML-IP 

model)

Nasir et al., arXiv, 2411.00436 (2024)
Polarization of 

CaTiO3 with applied 

electric field 

(MACE-MP-0 and 

custom models)

Kutana et al., arXiv, 

2412.03541 (2024)



Hands—on session?

31



Build NequIP and MACE, run MD

32Hopefully get some molecules to explode!



Summary

• Interatomic potentials are important for simulating dynamics in systems

• MLIPs provide better accuracies than classical force fields at similar computational 

costs

• Classical MLIPs: atom-centered

• Accuracy improvement largely due to feature engineering and including non-linearity

• Message passing, equivariance, and high body-order: important for accuracy 

improvement

• MACE: offers a platform and systematic ways to create foundational models

• NequIP: highly efficient message passing, equivariant models for large system sizes

33saigautamg@iisc.ac.in; https://sai-mat-group.github.io; https://github.com/sai-mat-group   

mailto:saigautamg@iisc.ac.in
https://sai-mat-group.github.io/
https://github.com/sai-mat-group
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