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Why bother about materials science?

Key performance bottlenecks in key applications: governed by materials used
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Energy and power density of a battery: limited by materials used as
electrodes (and at times, electrolytes)

Key material properties: stability, ionic mobility, reaction energies

Usage of better materials = better performance

Efficiency of a photovoltaic: choice of semiconductor used as the
light absorber

Key material properties: band gap, stability, resistance to point
defects



Why use machine learning (ML) In

materials science?

Technological innovation and deployment is a ‘slow’ process: often limited by materials
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Gross et al., Energy Policy 123, 682-699 (2018)

Innovation is
particularly
slow in
energy
generation
sector!



Why use machine learning (ML) In
materials science?

Technological innovation and deployment is a ‘slow’ process: often limited by materials
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Faster ways of discovering new/better materials - faster innovation cycles

Machine learning = “model” materials/“predict” properties faster
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Materials Genome (2011-present
THE U.S. MATERIALS GENOME INITIATIVE

“...to discover, develop, and deploy new materials twice as fast, we’re launching what we call the Materials Genome Initiative”

OMeeting Societal Needs
Advanced materials are at the heart
of innovation, economic opportunities,
and global competitiveness. They are
the foundation for new capabilities,
tools, and technologies that meet
urgent societal needs including clean
energy, human welfare, and national
security.

/i
=
1
—— Clean Energy ——O Human Welfare

The MGI is a multi-agency initiative to
renew investments in infrastructure
designed for performance, and to
foster a more open, collaborative
approach to developing advanced
materials, helping U.S. Institutions
accelerate their time-to-market.
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~ President Obama, 2011

The U.S. Materials Genome Initiative (MGI)
challenges researchers, policymakers, and
business leaders to reduce the time and
resources needed to bring new materials

to market—a process that today can take

20 years or more.
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Deployment

{O Computational tools ————————O Experimental tools —————O Collaborative networks —————( Digital data
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Evolution of ‘'modelling’ in materials

sclence

On the determination of molecular fields.
—Il. From the equation of state of a gas

J. E. Jones

Published: 01 October 1924 https://doi.org/10.1098/rspa.1924.0082

1924

Inhomogeneous Electron Gas

P. Hohenberg and W. Kohn
Phys. Rev. 136, B864 — Published 9 November 1964

1964

Computer simulation of local order in condensed phases of silicon

Frank H. Stillinger and Thomas A. Weber
Phys. Rev. B 31, 5262 — Published 15 April 1985; Erratum Phys. Rev. B 33, 1451 (1986)

1986

From ultrasoft pseudopotentials to the projector augmented-wave
method

G. Kresse and D. Joubert
Phys. Rev. B 59, 1758 — Published 15 January 1999

1999

Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces

Jorg Behler and Michele Parrinello
Phys. Rev. Lett. 98, 146401 — Published 2 April 2007

2007

THE U.S. MATERIALS GENOME INITIATIVE ~ 2011-
s 2018

1957

1975

1996

2003

2018-

present

RESEARCH ARTICLE | AUGUST 13 2004
Phase Transition for a Hard Sphere System
Special Collection: JCP 90 for 90 Anniversary Collection

B. J. Alder; T. E. Wainwright
'.) Check for updates

J. Chem. Phys. 27, 1208-1209 (1957)
https://doi.org/10.1063/1.1743957  Article history &

Clustering and ordering in solid solutions

D. de Fontaine

Generalized Gradient Approximation Made Simple

John P. Perdew, Kieron Burke, and Matthias Ernzerhof
Phys. Rev. Lett. 77, 3865 — Published 28 October 1996; Erratum

Shock Waves in High-Energy Materials: The Initial Chemical Events
in Nitramine RDX

Alejandro Strachan, Adri C. T. van Duin, Debashis Chakraborty, Siddharth Dasgupta, and William A. Goddard, Ill
Phys. Rev. Lett. 91, 098301 — Published 28 August 2003

Predicting Crystal Structures with Data Mining of Quantum
Calculations

Stefano Curtarolo, Dane Morgan, Kristin Persson, John Rodgers, and Gerbrand Ceder
Phys. Rev. Lett. 91, 135503 — Published 24 September 2003
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Types of ML In materials science

Regressions: make property Interatomic potentials:

Advanced topics:
predictions better with describe potential energy Diffusion (generative)
‘simple’ inputs surface accurately models, language models,
(also classifications) transfer learning
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Where does the data come from’P

Home

Benchmark Info

Leaderboard-Property: General Purpose Algorithms on matbench vo.1

Find more information about this benchmark on

Task name Samples Algorithm Verified MAE {unit) or ROCAUC Notes

87.7627 (MPa)

33.1918 (meViatom)

26.7606 (cm*-1)

0.3327 (eV)

0.2711 (unitless)

0.9209
& 0.9603
DEAD v A ALIVE oPtmr[lzgg%n 0,967 0.0670 (log10(GPa)) structure required

SCHRODINGER'S CAT o st o

0.0269 (eViunit cell) struciure required

0.1559 (eV) structure required

0.9520 structure required

0.0170 (eV/atom) struciure required

Data organization: python/API OO ¢ & )
o« o

ML: python ( I C S D thonal Institute of H-‘-[m

Standards and Technology


https://matbench.materialsproject.org/
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. REGISTRATION

BRIEF INAUGURATION

. SESSION 1:
BASICS OF SUPERVISED ML-:
REGRESSION &

CLASSIFICATION MODELS

. COFFEE BREAK

. TUTORIAL FOR SESSION 1

- LUNCH

- SESSION 2A:

UNSUPERVISED ML-
DEEP LEARNING

TUTORIAL FOR SESSION 2A

. COFFEE BREAK

- SESSION 2B:

UNSUPERVISED ML-
GRAPH NEURAL NETWORKS

TUTORIAL FOR SESSION 2B

- COFFEE BREAK

- POSTER SESSION

- DINNER
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SESSION 3:

MACHINE LEARNED

INTERATOMIC POTENTIALS

COFFEE BREAK

- TUTORIAL FOR SESSION 3

LUNCH

SESSION 4A:

ADVANCED AI/ML-
TRANSFER LEARNING
TUTORTAL FOR SESSION 4A
COFFEE BREAK

SESSION 4B:

ADVANCED AI/ML-

LANGUAGE MODELS
TUTORIAL FOR SESSION 4B
COFFEE BREAK

SESSION 4C:

ADVANCED AI/ML-
DIFFUSION MODELS
TUTORIAL FOR SESSION 4C

CLOSING CEREMONY

HIGH TEA
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