

Introduction

Sai Gautam Gopalakrishnan,¹ Keith Tobias Butler²

Hands-on sessions¹: Dereje Bekele Tekliye, Sougat Purohit, Debsundar Dey, Tejus Rohatgi, Reshma Devi, and Pritam Ghosh

¹Materials Engineering, Indian Institute of Science

²Chemistry, University College London

saigautamg@iisc.ac.in¹; <u>k.t.butler@ucl.ac.uk²</u>; <u>https://sai-mat-group.github.io</u>

Jan 7, 2025

Acknowledgments

Prof. Keith Butler (UCL)

Javeed

Debolina

Group picture in Jun 2024

Ankur

2

Why bother about materials science?

Key performance bottlenecks in key applications: governed by materials used

Inside a photovoltaic cell

Energy and power density of a battery: limited by materials used as electrodes (and at times, electrolytes)

Key material properties: stability, ionic mobility, reaction energies

Usage of better materials \rightarrow better performance

Efficiency of a photovoltaic: choice of semiconductor used as the light absorber

Key material properties: band gap, stability, resistance to point defects

Why use machine learning (ML) in materials science?

Technological innovation and deployment is a 'slow' process: often limited by materials

Gross et al., Energy Policy 123, 682-699 (2018)

Why use machine learning (ML) in materials science?

Technological innovation and deployment is a 'slow' process: often limited by materials

Faster ways of discovering new/better materials \rightarrow faster innovation cycles

Machine learning \rightarrow "model" materials/"predict" properties faster

Gross et al., Energy Policy 123, 682-699 (2018)

Materials Genome (2011-present)

THE U.S. MATERIALS GENOME INITIATIVE

...to discover, develop, and deploy new materials twice as fast, we're launching what we call the Materials Genome Initiative" – President Obama, 2011

O Experimental tools

O Digital data

Evolution of 'modelling' in materials science

Types of ML in materials science

Regressions: make property predictions better with 'simple' inputs (also classifications)

Interatomic potentials:

describe potential energy surface accurately

Advanced topics:

Diffusion (generative) models, language models, transfer learning

Where does the data come from?

Data organization: python/API

ML: python

Info Full Bend	hmark Data How To Use	Leaderboard	s Per Task Reference		Q Search		
Leaderboard-Property: General Purpose Algorithms on matbench_v0.1 Find more information about this benchmark on the benchmark info page							
	Task name	Samples	Algorithm	Verified MAE (unit) or ROCAUC	Notes		
		312		87.7627 (MPa)			
		636		33.1918 (meV/atom)			
		1,265		28.7606 (cm^-1)	structure required		
		4,604		0.3327 (eV)			
		4,764		0.2711 (unitless)			
		4,921		0.9209			
		5,680		0.9603			
		10,987		0.0670 (log10(GPa))	structure required		
		10,987		0.0491 (log10(GPa))	structure required		
		18,928		0.0269 (eV/unit cell)	structure required		
		106,113		0.1559 (eV)	structure required		
		106,113		0.9520	structure required		
		132,752		0.0170 (eV/atom)	structure required		

https://matbench.materialsproject.org/

ige igr

2019)

Schedule_

07	JAN 2025 Tuesday	30	JAN 2025 Vednesday
09:00 a.m.	REGISTRATION BRIEF INAUGURATION	09:30 a.m.	SESSION 3: MACHINE LEARNED INTERATOMIC POTENTIALS
09:30 a.m.	SESSION 1: BASICS OF SUPERVISED ML- REGRESSION &	11:00 a.m.	COFFEE BREAK
	CLASSIFICATION MODELS	11:30 a.m.	TUTORIAL FOR SESSION 3
11:00 a.m.	COFFEE BREAK	01:00 p.m.	LUNCH
11:30 a.m.	TUTORIAL FOR SESSION 1	02:00 p.m.	SESSION 4A: ADVANCED AI/ML-
01:00 p.m.	LUNCH		TRANSFER LEARNING
02:00 p.m.	SESSION 2A: UNSUPERVISED ML-		TUTORIAL FOR SESSION 4A
	DEEP LEARNING	. ⊍3:⊍⊍ p.m.	COFFEE BREAK
	TUTORIAL FOR SESSION 2A	03:15 p.m.	SESSION 4B: ADVANCED AI/ML-
03:30 p.m.	COFFEE BREAK		LANGUAGE MODELS
04:00 p.m.	SESSION 2B: UNSUPERVISED ML-		TUTORIAL FOR SESSION 4B
	GRAPH NEURAL NETWORKS	04:15 p.m.	COFFEE BREAK
	TUTORIAL FOR SESSION 2B	04:30 p.m.	SESSION 4C: ADVANCED AI/ML-
05:30 p.m.	COFFEE BREAK		DIFFUSION MODELS
06:00 p.m.	POSTER SESSION		TUTORIAL FOR SESSION 4C
07:00 p.m.	DINNER	05:30 p.m.	CLOSING CEREMONY
		05:45 p.m.	HIGH TEA