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 Better charging rates play a critical role in the application of Li and beyond-Li-ion battery

technologies

 Intercalation systems: energy barrier to the diffusing ions in the host lattice primarily dictate the

overall rate performance of the battery
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Experimentally the energy barrier can be estimated using
techniques such as variable temperature impedance
spectroscopy and nuclear magnetic resonance

How accurate are theoretical/computational predictions of
migration barriers (E.) against available experimental
data?




NEB used in conjecture with Density
Functional Theory(DFT)?23
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Exchange correlational (XC) functional

Nudged elastic band (NEB)! calculations are useful to estimate migration
barriers computationally

Typically uses 4-20 images to mimic an elastic band, and in turn estimate
E,, and the minimum energy path (MEP)

Parallel component (springs) of the force ensures equal spacing of the
Images

In climbing image (Cl), spring forces on the image with highest energy is
removed

—— Strongly constrained and appropriately normed (SCAN)®

| XC choice —— Generalized gradient approximation (GGA)*

L—» DFT + Hubbard(U)®

Addition of uniform background charge

— 71 (NELECT)

— Addition of CI approximation



(a) Li3POg (b) Na3PSg

Wem

(c) MgxTi2Sg (d) LiCoO2

6 Electrodes

LiCoO,
ngTi284
LiFePO,
MgMn,0O,
LiMn,O,
NaV,0,

"“¢l¢

3 Electrolytes

Li,PO
| - 3Fy
(e) Nav204g (f) MgSc2Seq and LiMn204 2 (g) MgMn204 " (h) LiFePOg . Na3PS4
| . MgSc,Se,
! } '
Availability of Heterogeneity of Diversity of structural
experimental data intercalation ion frameworks
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* GGA and SCAN can give lower and upper bounds to experimental E_, prediction

« SCAN has lower mean absolute error (MAE = 140 meV) compared to other functionals (>145 meV)

Let’s examine a few select materials
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Tetrahedral site hop(TSH) Oxygen dumbbell hop(ODH) Other Functionals GGA+U
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GGA+U does not capture
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Rel. Comp. time (in hrs)
No of cores per image

SCAN has better numerical accuracy when compared to other XC functionals

SCAN (and SCAN+U) captures the underlying electronic structure well

—>  Need to lookat the computational time
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« Migration barriers are key in governing rate performance of batteries: need accurate computations to predict

« SCAN has a better numerical accuracy than GGA/GGA+U/SCAN+U, but is computationally expensive and exhibits
convergence difficulties

« The addition of NELECT and CI to the functionals doesn't affect E_ significantly in solid electrolytes
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