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Glad I could make the 
transition of the world to a
wireless society possible

But my reserves 
are limited!

Geopolitical constraints 
on my reserves.. How do I 
keep up with the world's

growing energy demands?

+

_

Na+

+

_

Li+

Fear not! I have got your back.
 I am abundant & affordable.
We're chemically identical. So, I can seamlessly fit 
into your production methods for commercialisation.

Great! 
Then what's 
holding you 

back?
It's my large size & low voltage, making my 
performance weak.
Alfred says our energy & power performance
is significantly influenced by our cathodes.
Time to innovate my cathodes. Let's begin.

"You Can't Save The World Alone!"
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PARAMETERS UNITS
1. Capacity

    
2. Average voltage

3. Current rate

4. Cycles

5. Capacity Fade

6. Migration barrier energy* for Na-ion mobility

(experimentally measured/
theoretically predicated)

(experimentally measured/
theoretically predicated with Density Functional Theory, DFT)

(DFT-Nudged Elastic Band, DFT-NEB,
 Bond Valence Site Energy, BVSE)

 *Only migration barrier energy estimated with DFT-NEB & BVSE are considered for this work

Factors affecting choice of cathodes:
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State-of-the-art Na-ion battery cathode:
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Na-ion BATTERY
Multiple phase transitions 
(high structural instability) 

during charge-discharge cycle

LAYERED TRANSITION METAL OXIDE FRAMEWORK
NxMO2

Hence, we need to explore polyanionic frameworks as Na-ion 
battery cathode because they show high structural integrity 

upon Na-ion exchange during cycle & elevated voltage

Critical overview of polyanionic frameworks as 
positive electrodes for Na-ion batteries
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SUMMARY OF CATHODES STUDIED:
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This cathodic framework has the potential to 
exhibit high capacity & voltage due to 
presence of light weight yet highly electro-
negative anionic group. However, the 
framework has been predominantly explored 
as Li-ion battery cathode.

For Na-ion battery, due attention of the 
scientific community is needed.

NaxMXO4

NaxMM'2(XO4)3

NaxMP2O7

NaxMO2y(PO4)2F3-2y

NaxMOyF3-y

Not enough data available

POLYANIONIC FRAMEWORK** PERFORMANCE DISCUSSION

**M/M'= Transition metal, x=Na content, X= High-valent non-redox active cation i.e., P5+, S6+, Si4+ etc., y= O content, MO6/XO4= green/blue polyhedra, Na+= pink, purple, yellow balls, O/F= red/grey balls 

CONCLUSION:

So far NaSICONs & Fluorophosphates 
appear highy promising Na-ion 

battery cathodes

+

_

Na+
Soon I can ease Li-ion 

battery's load to meet the 
global energy needs.

Persistent & ongoing
challenges:

Possible strategies:

Poor electronic conductivity & 
capacity fading:
Result in poor cycle life

Low intrinsic theoretical capacity 
due to presence of heavy 
anionic groups

Apply & improve electronically 
conductive coating & size reduction

Explore mixed transition metal 
compositions

Rigorous computational study for 
predicting new cathode chemistries
& understand Na-ion migration
within the framework. 

Swift Na-ion diffusion but poor electronic 

conductivity (since isolated MO6 octahedra)  

Low capacity & voltage: Improved using 
mixed transition metal compositions, M-M'

Capacity fade is high but at high rates & high 
cycle life (e.g., 48% @20 C, 10000 cycles)

PO4
3- NaSICON show higher capacity & lower 

migration energy for Na than SO4
2- NaSICON

3D Na-ion diffusion (0.33-0.5 eV, DFT-NEB) 

Low capacity at reasonable voltage, 
capacity fade & low cycle life at low rates: 
Improved in Na-excess pyrophosphate (x>2) 
(e.g., 
Na2FeP2O7: 82 mAhg-1, 3 V, 30 cycles @0.1 C
Na3.12Mn2.44(P2O7)2: 114 mAhg-1, 3.6 V, 
75% capacity retention at 500 cycles @5 C)

High capacity & voltage for both 
stoichiometric (x upto 2) & Na-excess (x>2) 

Capacity fade & low cycle life: Improved with 
particle size reduction & morphological 
modification (e.g., 
from 60 to 2000 cycles @0.1 C)

Voltage elevates significantly in Na-excess 
fluorophosphate (e.g., 
Na3V2(PO4)2F3: 3.95 V (V3+/2+)

Two 1D Na-ion diffusion tunnels along c-axis
Tunnel 1: ~1.28 eV (corners)
Tunnel 2: ~0.31 eV (edge-centre) (BVSE)  

PO4
3- alluaudite show much lower capacity & 

voltage than SO4
2- alluaudite (e.g.,

Na2MnFe2(PO4)3:   50 mAhg-1, 1.5-4.3 V    
Na2Fe2(SO4)3    : 102 mAhg-1, 3.8 V (Fe3+/2+)

1D Na-ion diffusion tunnel along b-axis 
PO4

3-  olivine: ~0.28 eV 
SiO4

4- olivine: ~0.26 eV (DFT-NEB)
 
Poor cycle life & capacity fading at low rates 
(e.g., 
NaFePO4   : 125 mAhg-1 @0.05 C, 50 cycles)
Na2FeSiO4: 119 mAhg-1 @0.25, 
                 ~0.9 reversible Na)
Capacity fading in SiO4

4- olivines improved 
with addition of electrolyte additives
            

(highest reported 
voltage for Fe3+/2+

redox couple)

NASICON
NaxM2(XO4)3
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