Glad I could make the transition of the world to a wireless society possible

Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries

DEBOLINA DEB<sup>1</sup>, SAI GAUTAM GOPALAKRISHNAN<sup>1</sup>

<sup>1</sup>Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India

debolinadeb@iisc.ac.in saigautamg@iisc.ac.in

भारतीय विज्ञान संस्थान

### **SUMMARY OF CATHODES STUDIED:**



But my réserves 🗸

| ANODE (-) ELECTROLYTE CATHODE (+)<br>Na-ion BATTERY                                                                                                                                                                                                                                                |                                               | Capacity: 118 mAhg <sup>-1</sup><br>(2.44 Na <sup>+</sup> )                                                  | Rate<br>Capacity<br>Fade    | Na <sub>2</sub> FeP <sub>2</sub> O <sub>7</sub> : 82 mAhg <sup>-1</sup> , 3 V, 30 cycles @0.1 C<br>Na <sub>3.12</sub> Mn <sub>2.44</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>2</sub> : 114 mAhg <sup>-1</sup> , 3.6 V,<br>75% capacity retention at 500 cycles @5 C) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple phase tran<br>(high structural inst<br>during charge-discha<br>Hence, we need to explore polyanionic frameworks a                                                                                                                                                                         | sitions<br>ability)<br>rge cycle<br>as Na-ion | <b>FLUOROPHOSPHATE</b><br>Na <sub>x</sub> MO <sub>2y</sub> (PO <sub>4</sub> ) <sub>2</sub> F <sub>3-2y</sub> | Reported Capacity<br>Cycles | High capacity & voltage for both<br>stoichiometric (x upto 2) & Na-excess (x>2)<br>Capacity fade & low cycle life: Improved with                                                                                                                                       |
| battery cathode because they show high structural i<br>upon Na-ion exchange during cycle & elevated vo<br>Factors affecting choice of cathodes:                                                                                                                                                    | ntegrity<br>oltage                            | Theoretical<br>Capacity: 128.3 mAhg <sup>-1</sup><br>(2 Na <sup>+</sup> )                                    | Voltage                     | modification (e.g.,<br>from 60 to 2000 cycles @0.1 C)<br>Voltage elevates significantly in Na-excess                                                                                                                                                                   |
| PARAMETERS                                                                                                                                                                                                                                                                                         | UNITS                                         | b<br>                                                                                                        | Capacity<br>Fade            | fluorophosphate (e.g.,<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> F <sub>3</sub> : 3.95 V (V <sup>3+/2+</sup> )                                                                                                                                 |
| <ul> <li>1. Capacity         <ul> <li>(experimentally measured/<br/>theoretically predicated)</li> </ul> </li> <li>2. Average voltage         <ul> <li>(experimentally measured/<br/>theoretically predicated with Density Functional Theory, DFT)</li> </ul> </li> <li>3. Current rate</li> </ul> | mAhg⁻¹<br>V<br>C                              | <b>PEROVSKITE</b><br>Na <sub>x</sub> MO <sub>y</sub> F <sub>3-y</sub><br>Symmetry: <i>Pmna</i>               | Not enough data available   | This cathodic framework has the potential to<br>exhibit high capacity & voltage due to<br>presence of light weight yet highly electro-<br>negative anionic group. However, the<br>framework has been predominantly explored<br>as Li-ion battery cathode.              |
| 4. Cycles                                                                                                                                                                                                                                                                                          | number                                        | Capacity: 197 mAhg <sup>-1</sup>                                                                             |                             |                                                                                                                                                                                                                                                                        |
| 5. Capacity Fade                                                                                                                                                                                                                                                                                   | %                                             | (1 Na <sup>+</sup> )                                                                                         |                             | For Na-ion battery, due attention of the                                                                                                                                                                                                                               |
| 6. Migration barrier energy <sup>*</sup> for Na-ion mobility<br>(DFT-Nudged Elastic Band, DFT-NEB,<br>Bond Valence Site Energy, BVSE)                                                                                                                                                              | eV                                            |                                                                                                              |                             |                                                                                                                                                                                                                                                                        |

|                                                                                           |                                                                                                                                                                                                                                                                        | Developent 0 engeling | Dessible stratesies. |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|
| *Only migration barrier energy estimated with DFT-NEB & BVSE are considered for this work | ** $M/M'$ = Transition metal, x=Na content, X = High-valent non-redox active cation i.e., $P^{5+}$ , $S^{6+}$ , $S^{6+}$ , $S^{6+}$ , $S^{6+}$ , $S^{6+}$ , $S^{6+}$ , $MO_6/XO_4$ = green/blue polyhedra, $Na^+$ = pink, purple, yellow balls, $O/F$ = red/grey balls |                       |                      |
|                                                                                           |                                                                                                                                                                                                                                                                        |                       |                      |

### **IREFERENCES:**

1. M.S. Whittingham, Chem. Rev. 114(23), 11414 (2014) 2. C. Vaalma et al., Nat. Rev. Mater. 3(4), 18013 (2018) 3. A. Rudola et al., J. Mater. Chem. A 9(13), 8279 (2021) 4. P. Hohenberg et al., Phys. Rev. 136(3B), B864 (1964) 5. R. Devi et al., npj Comput.Matr. 8(1), 160 (2022) 6. S. Adams et al., Struct. Bond. 158, 129 (2014) 7. J.L. Kaufman et al., Phys. Rev. Mater. 3(1), 15402 (2019) 8. B.Singh et al., J. Mater.Chem. A 9(1), 281 (2021) 9. Y. Zhao et al., Chem. Eng. J.339, 162 (2018) 10. S.M. Oh et al., Electrochem. Commun. 22(1), 149 (2012) 11. P. Barpanda et al., Nat. Commun. 5, 4358 (2014) 12. H. Li et al., ACS Appl. Mater. Interfaces 10(29), 24564 (2018)

13. T. Broux et al., Chem. Mater. 28(21), 7683 (2017)

14. A. Kitajou et al., Batteries 4(4), 68 (2018)

## **CONCLUSION:**

So far NaSICONs & Fluorophosphates appear highy promising Na-ion **battery cathodes** 

# Soon I can ease Li-ion battery's load to meet the global energy needs.

#### Persistent & ongoing challenges:

Poor electronic conductivity & capacity fading: Result in poor cycle life

Low intrinsic theoretical capacity due to presence of heavy anionic groups

#### **Possible strategies:**

Apply & improve electronically conductive coating & size reduction

Explore mixed transition metal compositions

Rigorous computational study for predicting new cathode chemistries & understand Na-ion migration within the framework.

D. Deb, and G. Sai Gautam, "Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries", J. Mater. Res. 37, 3169-3196 (2022)

# Namma Psi-K Conference



