

Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries

- Debolina Deb

P.I. Dr. Sai Gautam Gopalakrishnan

Materials Engineering Department, Indian Institute of Science

The Nobel Prize in Chemistry 2019

M. Stanley Whittingham

"for the development of lithium-ion batteries"

"World transitioning to fossil fuel-free and wireless society"

Li-ion battery has outperformed

other storage systems in terms of energy density & battery life

Supply chain concerns with Li & Co

Increasing cost of Li & Co

These concerns encourage us to look for beyond Li-ion battery

Na-ion battery utilize similar

engineering & production methods

as the well-established protocols in Li-ion battery

Abundant & affordable Na reserves makes Na-ion battery a viable alternative to Li-ion battery

INNOVATIONS IN POSITIVE ELECTRODES (Cathodes) CAN OVERCOME INTRINSIC DRAWBACKS

Because cathodes influence energy & power performance significantly Lower voltage & larger size of Na

results in poor performance of Na-ion battery

Abundant & affordable Na reserves

makes Na-ion battery a viable

alternative to Li-ion battery

Polyanionic Frameworks as

Na-ion battery cathode

Show structural integrity upon Na-ion exchange during cycle

What factors determine the choice of cathodes?

**Highest Occupied Molecular Orbital

"NaSICONs were first characterized by Goodenough & Hong in the 1970s as frameworks that exhibited swift Na mobility"

STRUCTURE & MIGRATION

 $Na2 \leftrightarrow Na1 \leftrightarrow Na2$

Isolated MO₆ octahedra contribute to poor electronic conductivity

ELECTROCHEMICAL PERFORMANCE

Z. Jian, et al. Electrochem. Commun. 14(1), 86 (2012)

ELECTROCHEMICAL PERFORMANCE

B. Singh, et al. J. Mater. Chem. A 9(1), 281 (2021)

Predicted intercalation voltage for 28 different Na_xMM'(PO₄)₃ compositions

Where, M & M' = Ti, V, Cr, Mn, Fe, Co, or Ni.

Mixed Transition metal NaSICONs show better performance

Mn, Co, & Ni-based NaSICONs may be experimentally synthesizable

SULPHATE NaSICON

V. Kapoor, et al. Chem. Mater. 34(7), 3373 (2022)

Increase in average voltage due to strong inductive effect of SO_4^{2-} moiety

BUT

Sulphate NaSICONs have lower capacity:

4 Na⁺ in phosphate NaSICON (Na₄V₂(PO₄)₃) 2 Na⁺ in sulphate NaSICON (Na₂Fe₂(SO₄)₃)

Sulphate NaSICONs have higher migration barrier energy:

- ~0.31 eV in phosphate NaSICON
- ~0.89 eV in sulphate NaSICON

S.C. Chung, et al. J. Mater. Chem. A 6(9), 3919 (2018)

So complete substitution of phosphates with sulphates may not be entirely beneficial

"Olivines are inspired by their commercially successful Li analog, LiFePO₄"

STRUCTURE & MIGRATION

ELECTROCHEMICAL PERFORMANCE

Much improvement needed for olivines

"Alluaudites are primarily phosphate-based minerals with a rigid "open" framework, suitable for Na (large ion) intercalation"

STRUCTURE & MIGRATION

ELECTROCHEMICAL PERFORMANCE

Other phosphate alluaudites reported

 $\begin{array}{lll} Na_2Co_2Fe(PO_4)_3 & (Co-Fe) \\ Na_2Ni_2Fe(PO_4)_3 & (Ni-Fe) \\ Na_2Co_2Cr(PO_4)_3 & (Co-Cr) \\ Na_{1.47}Fe_3(PO_4)_3 & (Non-Na_{1.86}Fe_3(PO_4)_3 & stoichiometric) \end{array}$

Associated with conversion reactions or electrolyte decomposition

Phosphate Alluaudites show POOR electrochemical performance.

SULPHATE ALLUAUDITES

Sulfate alluaudites are more promising than phosphate alluaudites

"Pyrophosphates exhibit better thermal stability and resistance to oxygen evolution and moisture exposure as compared to others"

STRUCTURE & MIGRATION

ELECTROCHEMICAL PERFORMANCE

Na-excess pyrophosphate: Reasonable performance

 $Na_{3.12}Mn_{2.44}(P_2O_7)_2$ displays:

✓ 114 mAh g⁻¹ (vs 118 mAh g⁻¹)
✓ 3.6 V vs Na (Mn^{3+/2+})
✓ 75% capacity retention (500 cycles at 5 C)

P. Barpanda, et al. Electrochem. Commun. 24(1), 116 (2012)

"The addition of fluorine as an anion, within oxide-based polyanionic frameworks, can elevate the intercalation voltage due to the stronger inductive effect exerted by F^- than $O^{2-"}$

STRUCTURE

ELECTROCHEMICAL PERFORMANCE

"The typical ReO₃-type perovskites are ideal frameworks to fit in large ions like Na"

STRUCTURE

General formula: $NaMO_{x}F_{3-x}$

Where, M = Transition metal

Symmetry: Pmna

This class of compounds needs due attention of the research community

Na1 (Wyckoff position: 4c)

CONCLUSION

STRUCTURE	AVERAGE VOLTAGE (V)	REPORTED VS. THEORETICAL CAPACITY (mAh g ⁻¹)	% THEORETICAL CAPACITY ACHIEVED	CYCLES @ CAPACITY FADE (%)	REFERENCES
NaSICON	3.4	114.2 <mark>(117)</mark>	97	10000 <mark>(48%)</mark>	Y. Zhao, et al. Chem. Eng. J. 339, 162 (2018)
Olivine	2.7	125 <mark>(154)</mark>	81	50 <mark>(8%)</mark>	S.M. Oh, et al. Electrochem. Commun. 22(1), 149 (2012)
Alluaudite	3.8	107.9 <mark>(120)</mark>	90	300 (10%)	M. Chen, et al. Adv. Energy Mater. 8(27), 1800944 (2018)
Pyro-phosphate	3.6	114 (118.1)	96.6	500 <mark>(25%)</mark>	H. Li, et al. ACS Appl. Mater. Interfaces 10(29), 24564 (2018)
Fluoro-polyanion	3.95	114 (128.3)	88.85	1000 (25%)	C. Zhu, et al. Chem. Mater. 29(12), 5207 (2017)

NaSICONs & Na-excess fluorophosphates appear highly promising Na-ion battery cathodes

Persistent and ongoing challenges:

Poor electronic conductivity: causing poor cycling performance

Lower theoretical capacities (compared to layered oxide framework)

Possible strategies to overcome the challenges

Applying & improving electron-conducting coatings & size reduction

Rigorous computational study for predicting new chemistries & understand Na-ion migration within the framework

These strategies may aid the search for next generation of Na-ion battery, powered by polyanionic cathodes.

ACKNOWLEDGEMENT

Simulations And Informatics of MATerials Group Materials Engineering Department, IISc

Param Pravega

Supercomputer Education and Research Centre (SERC), IISc