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The Nobel Prize in Chemistry 2019

John B. Goodenough M. Stanley Whittingham Akira Yoshino

“for the development of lithium-ion batteries”
2



“World transitioning to fossil fuel-free and wireless society”

TRANSPORTATION ENERGY INDUSTRYCONSUMER ELECTRONICS

3
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Li-ion battery has outperformed 

other storage systems in terms of
energy density & battery life

+-
Supply chain concerns with Li & Co

Increasing cost of Li & Co

These concerns encourage us 
to look for beyond Li-ion battery



Na-ion battery utilize similar 

engineering & production methods
as the well-established protocols 

in Li-ion battery

6

+
Abundant & affordable Na reserves

makes Na-ion battery a viable

alternative to Li-ion battery
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-

Lower voltage & larger size of Na
results in poor performance of
Na-ion battery

+
Abundant & affordable Na reserves

makes Na-ion battery a viable

alternative to Li-ion battery

INNOVATIONS IN 

POSITIVE ELECTRODES (Cathodes)

CAN OVERCOME INTRINSIC DRAWBACKS

Because cathodes influence energy
& power performance significantly



State-of-the-art Na-ion battery cathode Layered Oxide Framework

General formula: NaxMO2

Where, M = Transition metal 
x = Na content 

They show appreciable energy density

Layered oxide 
frameworks 

show 

high structural 
instability

Na+

Na+

O3 (!~#) P3 (!~$. &)

TM sites

O atoms
Na atoms

Conventional cell boundary

Coordination environment of Na

During charge-discharge cycle
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State-of-the-art Na-ion battery cathode Layered Oxide Framework

General formula: NaxMO2
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x = Na content 
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NEED TO EXPLORE 
STRUCTURALLY 

RIGID FRAMEWORKS
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Show structural integrity 
upon Na-ion exchange during cycle

Polyanionic 
Frameworks
as 
Na-ion battery cathode

NaSICON

OLIVINE

ALLUAUDITE PEROVSKITE

FLUORO-
POLYANION

PYRO-
PHOSPHATE
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What factors determine the choice of cathodes?

1. Energy density of cathode:

Voltage, V
(driving force for Na-ion 

to flow to cathode)

×
Amount of Na-ion 
stored in cathode

Capacity, mAh g-1

2. Na-ion migration within framework 3. Cycle number (battery life)



“NaSICONs were first characterized by Goodenough & Hong
in the 1970s as frameworks that exhibited swift Na mobility”

1 NaSICONs
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STRUCTURE & MIGRATION

General formula: NaxM2(XO4)3

Where, M = Transition metal 

X  = P5+, S6+, Si4+, Nb5+ etc.
(High-valent non-redox
active cation)

Na1 (Wyckoff position: 6b)

Na2 (Wyckoff position: 18e)

Symmetry: R!3m

“Lantern unit”

Isolated MO6 octahedra

contribute to poor 

electronic conductivity
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~ 3.4 V vs Na  (V4+/3+ )
~ 93 mAh g-1 (vs. 117 mAh g-1)

ELECTROCHEMICAL PERFORMANCE

~ 1.6 V vs Na (V3+/2+ )

Na3V2(PO4)3 ↔Na4V2(PO4)3 (Anode)

Na3V2(PO4)3↔ NaV2(PO4)3 (Cathode)

Z. Jian, et al. Electrochem. Commun. 14(1), 86 (2012)

NVP symmetric cell

X. Yao, et al. ACS Appl. Mater. Interfaces 10(12), 10022 (2018)

84% capacity 
retained over 3000 cycles

Na3V2(PO4)3 or NVP (theoretical capacity of 117 mAh g-1)

~ 3.4 V vs Na  (V4+/3+ )
~ 93 mAh g-1 (vs. 117 mAh g-1)
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ELECTROCHEMICAL PERFORMANCE

B. Singh, et al. J. Mater. Chem. A 9(1), 281 (2021)

Predicted intercalation voltage for 

28 different NaxMMʹ(PO4)3 compositions

Where, M & Mʹ = Ti, V, Cr, Mn, Fe, Co, or Ni.

Mn, Co, & Ni-based NaSICONs may be
experimentally synthesizable

Mixed Transition metal NaSICONs 
show better performance
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SULPHATE NaSICON

V. Kapoor, et al. Chem. Mater. 34(7), 3373 (2022)

Increase in average voltage due to 
strong inductive effect of '(!"# moiety

So complete substitution of phosphates 

with sulphates may not be entirely beneficial 

BUT

Sulphate NaSICONs have lower capacity:

4 Na+ in phosphate NaSICON (Na4V2(PO4)3)

2 Na+ in sulphate NaSICON (Na2Fe2(SO4)3)

Sulphate NaSICONs have higher migration barrier 
energy:

~0.31 eV in phosphate NaSICON 

~0.89 eV in sulphate NaSICON

S.C. Chung, et al. J. Mater. Chem. A 6(9), 3919 (2018)
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2 Olivines

“Olivines are inspired by their commercially successful
Li analog, LiFePO4”
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STRUCTURE & MIGRATION

1D “tunnel” along b-axis

S.P. Ong, et al. Energy Environ. Sci. 4(9), 3680 (2011)

~0.28 eV migration barrier energy 
estimated theoretically

Na1 (Wyckoff position: 4c)

Symmetry: Pmna

Where, M = Transition metal 

X  = P5+

(Usually Fe, Mn, Ni)

(But Si4+ is known too)

General formula: NaxM XO4

Poor electronic conductivity 
prevails due to only 

corner-shared MO6 octahedra
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ELECTROCHEMICAL PERFORMANCE
NaFePO4 (theoretical capacity of 154 mAh g-1)

~ 2.7 V vs Na  (Fe3+/2+)
~ 125 mAh g-1 (vs. 154 mAh g-1)

S.M. Oh, et al. Electrochem. Commun. 22(1), 149 (2012)

Capacity fading after 50 cycles

Na2FeSiO4 (theoretical capacity of 270 mAh g-1)

~ 119 mAh g-1 (vs. 270 mAh g-1)

After the first cycle only 50% of Na-ion could be stored back; 

Reducing the capacity to less than half  

K. Kaliyappan, et al. Electrochim. Acta 283, 1384 (2018)

Much improvement needed for olivines
20



3 Alluaudites
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“Alluaudites are primarily phosphate-based minerals with 
a rigid “open” framework, suitable for Na (large ion) 
intercalation”



Na

Na

Symmetry: C2/c

Where, M = Transition metal 

General formula: 
Na(2)Na(1)M(1)M(2)2(PO4)3

STRUCTURE & MIGRATION

Na1 (Wyckoff position: 4e)

Na2 (Wyckoff position: 4b)

D. Dwibedi, et al. Electrochem. Acta  283, 850 (2018)

1D “tunnel” along c-axis

~1.28 eV along tunnel_1 “Corners”
~0.31 eV along tunnel_2 “Edge-centred”
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ELECTROCHEMICAL PERFORMANCE

K. Trad, et al. Chem. Mater. 22(19), 5554 (2010)

Na2MnFe2(PO4)3 (theoretical capacity of 109 mAh g-1)

~ 1.5-4.3 V vs Na  (Fe3+/2+ )
~ 50 mAh g-1 (vs. 109 mAh g-1)

Phosphate Alluaudites show 

POOR electrochemical performance. 

Other	phosphate	alluaudites	reported

Na2Co2Fe(PO4)3 (Co-Fe)

Na2Ni2Fe(PO4)3 (Ni-Fe)

Na2Co2Cr(PO4)3 (Co-Cr)

Na1.47Fe3(PO4)3

Na1.86Fe3(PO4)3

(Non-
stoichiometric)

Associated with 
conversion reactions 

or electrolyte 
decomposition

23



SULPHATE ALLUAUDITES
General formula: 

Na(2)Na(1)Na(3)M(2)2(SO4)3

Na1

Na3

Na2
(Partial)

(Full)

(Partial)

Na2Fe2(SO4)3 (theoretical capacity of 120 mAh g-1)

P. Barpanda, et al. Nat. Commun. 5, 4358 (2014)

~ 3.8 V vs Na  (Fe3+/2+ )
~ 102 mAh g-1 (vs. 120 mAh g-1)

Sulfate alluaudites are more promising 
than phosphate alluaudites

24



4
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“Pyrophosphates exhibit better thermal stability and
resistance to oxygen evolution and moisture exposure as
compared to others”

Pyro-
phosphates



Na 
Occupancy

Full

Full

Full

Partial

Partial

Partial

Na2Fe2P2O7

Na2Mn2P2O7

NaxCo2P2O7

( ⁄P4! mnm,
Pna2")

Symmetry

(P1 or P*1)
(P1 or P*1)
(P1 or P*1)

P*1Na2Fe2P2O7

STRUCTURE & MIGRATION

Na2 (Wyckoff position: 2i)

Na1 (Wyckoff position: 2i)

Na3 (Wyckoff position: 2i)

Na5 (Wyckoff position: 2i)

Na6 (Wyckoff position: 2i)

Na4 (Wyckoff position: 1d)

J.M. Clark, et al. J. Mater. Chem. A 2(30), 11807 (2014)

Along the three directions

~0.33-0.5 eV
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ELECTROCHEMICAL PERFORMANCE
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P. Barpanda, et al. Electrochem. Commun. 24(1), 116 (2012)

P)1Na2Fe2P2O7 (theoretical capacity of 90 mAh g-1)

Capacity fading mitigated by
partial substituting Fe with Mn;

Na2Fe0.5Mn0.5P2O7

~ 3 V vs Na  (Fe3+/2+ )
~ 82 mAh g-1 (vs. 90 mAh g-1)

Capacity fading after 30 cycles

Na3.12Mn2.44(P2O7)2 displays: 

ü 114 mAh g-1 (vs 118 mAh g-1)

ü 3.6 V vs Na     (Mn3+/2+)

ü 75% capacity retention (500 cycles at 5 C)

Na-excess pyrophosphate: Reasonable performance



5 Fluoro-
polyanions
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“The addition of fluorine as an anion, within oxide-based
polyanionic frameworks, can elevate the intercalation voltage
due to the stronger inductive effect exerted by !! than ""!”



Symmetry: C2/c
Pbcn
P4/mmm

Where, M = Transition metal

X  = P5+or S6+

General formula: Na2MXO4F

Na1 (Wyckoff position: 8d)

Na2 (Wyckoff position: 8d)

STRUCTURE
Pbcn

29



ELECTROCHEMICAL PERFORMANCE
Na2Fe (PO4)F (theoretical capacity of 124 mAh g-1)

L. Sharma, et al. ACS Appl. Mater. Interfaces 9(40), 34961 (2017)

Cycle life improved from 60 to 2000 cycles upon 
size reduction and morphological modifications

~ 2.6- 4 V vs Na (Fe3+/2+ )
~ 100 mAh g-1 (vs. 124 mAh g-1)

Na3V2 (PO4)2F3 (theoretical capacity of 128 mAh g-1)

R.A. Shakoor, et al. J. Mater. Chem. 22(38), 20535 (2012)

~ 3.95 V vs Na (V3+/2+ )
~ 120 mAh g-1 (vs. 128 mAh g-1)

Na-excess fluorophosphate seems 

BETTER battery cathode than fluorophosphates
30



6 Perovskites

“The typical ReO3-type perovskites are ideal frameworks
to fit in large ions like Na”
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STRUCTURE

Symmetry: Pmna

General formula: NaMOxF3-x

Na1 (Wyckoff position: 4c)

This class of compounds needs due

attention of the research community 

Where, M = Transition metal

32
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STRUCTURE AVERAGE 
VOLTAGE

(V)

REPORTED VS. 
THEORETICAL 

CAPACITY
(mAh g-1)

% 
THEORETICAL 

CAPACITY 
ACHIEVED

CYCLES 
@ CAPACITY 

FADE

(%)

REFERENCES

NaSICON 3.4 114.2 (117) 97 10000 (48%) Y. Zhao, et al. Chem. Eng. J. 
339, 162 (2018)

Olivine 2.7 125 (154) 81 50 (8%) S.M. Oh, et al. Electrochem.
Commun. 22(1), 149 (2012)

Alluaudite 3.8 107.9 (120) 90 300 (10%) M. Chen, et al. Adv. Energy 
Mater. 8(27), 1800944 (2018)

Pyro-phosphate 3.6 114 (118.1) 96.6 500 (25%)
H. Li, et al. ACS Appl. Mater. 
Interfaces 10(29), 24564 
(2018)

Fluoro-polyanion 3.95 114 (128.3) 88.85 1000 (25%) C. Zhu, et al. Chem. Mater. 
29(12), 5207 (2017)

NaSICONs & Na-excess fluorophosphates 
appear highly promising Na-ion battery cathodes 

CONCLUSION
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-

Persistent and ongoing challenges:

Poor electronic conductivity: causing poor cycling performance

Lower theoretical capacities (compared to layered oxide framework)

+
Possible strategies to overcome the challenges 

Applying & improving electron-conducting coatings & size reduction
455

Rigorous computational study for predicting new chemistries
& understand Na-ion migration within the framework 

These strategies may aid the search for next generation of Na-ion battery, 
powered by polyanionic cathodes.
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