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Introduction

. Growing demands for electric power: need high energy and power density energy storage devices!
. Increasing the performance of cathode materials of Lithium ion batteries (LIBs) : ongoing and active area of research?
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Advantages of using DRX compared to layered rocksalts
» Better structural stability upon Li removal

» Anionic redox: Higher voltage

» Operate at low rates and for low cycles

Need a computational technique which can
provide ‘quick’ and ‘accurate’ estimates of
energies and atomic forces

Difficulties modelling DRX using density functional theory (DFT)

» Many possible configurations Machine-learned interatomic
» High computational costs for large supercells potentials (MLIPs)

1. Kang et al., Science, 2006, 311, 977-980, 2. Goodenough et al., ] Am Chem Soc. 2013, 135, 1167-1176, 3. Clément et al., Energy Environ Sci, 2020, 13, 345-373 2



Machine-learned interatomic potentials (MLIPs)

Represent potential Map the atomic configuration of a structure to
energy surface (PES)?! its total energy (by minimizing the loss function)
Database V;d héf

E0,y) / eV
0.4
0.0
et | 60
Structures (o) ML models ° 601201802-;6“’”:::. 300 wy/°
Energies (E) 80 300 360

Forces (F)

« MTP (moment tensor potential)
* SNAP (spectral neighbor analysis potential)
* GAP (Gaussian approximation potential)

* AENET (atomic energy network)

Computational cost

Applications:
Large scale/long
time simulation:

molecular
dynamics (MD) and
Monte Carlo (MC)

DFT

MLIPs

Classical potentials

System scale

1.Artrith et al. ] Comput Aided Mol Des, 2021, 35, 557-586




Constructing MLIPs

* LITMO; + Li1xTM;,,0, + TMO, compositions = Total Structures = 10842
* TM=Sc,Ti, V, Cr, Mn, Fe, Co, Ni, and/or Cu (11-components)
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AENET : best potential for predicting total energies

Upper triangle: Test errors  Lower triangle: Training errors
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e AENET’s root mean squared
errors (RMSE) ~7.5 meV/atom
on energies: similar to DFT
(~1 meV/atom)

SNAP: largest errors on
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AENET and GAP display
similar energy RMSEs in
training and testing for all
large datasets: improvement
in transferability
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Train (90%): Test (10%)

* Lower training errors: Better accuracy (AENET)
* Lower test errors: Better transferability (AENET)

RMSE energy (meV/atom)

AENET performs best when dataset size is good enough, MTP reasonable at small datasets




MTP: best potential for predicting total forces

Upper triangle: Test errors Lower triangle: Training errors
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« AENET and GAP show significantly
high training errors on atomic
forces

MTP and SNAP: good accuracy and
transferability on force predictions

RMSE force (eV /)

1.41 1.34 1.37 1.55

2000 3000 4000 5000 6000 7000 8000 9000 10842
Dataset size

Train (950%): Test (10%) MTP to be the best performer for

* Lower training errors: Better accuracy (MTP): above 7000 dataset size any dynamics simulations among
* Lower test errors: Better transferability (MTP) the MLIP




Ease of training: AENET train fast at low epochs
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Increase in training time is more Rapid increase in computational time
e MTP train time ~ 2 X (AENET train rapid with increasing epochs for for the full 10842 dataset may not be
time at 300 epochs ) larger datasets worth the marginal gain in accuracy,
after 2300 epochs

e MTP is the slowest to train for all
dataset sizes, followed by GAP

AENET( 2300 epochs) is the best potential to predict energies in terms of accuracy and
computational time

Single core of a Intel® Xeon® Gold 6271 CPU, with a maximum random access memory of 128 Gigabytes, without any hyperthreading 7




Voltage predictions: AENET is reasonable
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Prediction of average intercalation voltages, in ordered, layered,
single-TM LITMO, as a test of accuracy, versus DFT calculations
using AENET (2300 epochs)

 Voltage errors: 10.05% against DFT

largest voltage errors: LiFeO, and LiTiO,

AENET potential to be useful for obtaining ‘quick’ voltage
predictions for several DRX

* High-throughput screening may be feasible with AENET potentials to identify high-voltage DRX cathode compositions

This MLIPs can be used to model highly disordered ceramic and/or metallic systems




Conclusions

* Difficult to model disorder rocksalts (DRX) using DFT

* Quantified the accuracy, transferability, and ease of training of atom-centered MLIPs (MTP, SNAP, GAP, and AENET), in
their ability to model the PES of DRX

* AENET : best potential for predicting total energies. MTP: the best performer for atomic forces; AENET (MTP) exhibit
the smallest (largest) computational training time
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