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• Growing demands for electric power: need  high energy and power density energy storage devices1
• Increasing the performance of cathode materials of Lithium ion batteries (LIBs) : ongoing and active area of research2

To increase the 
energy density of LIB 
cathodes is to utilize 
anionic redox (i.e., 

oxygen redox), which 
can be reversibly 

accessed in cathode 
materials with a Li-
excess composition3

Cathode
(Li1+xTM1-yO2)

Disordered 
rocksalt structure 

(DRX) 

Advantages of using DRX compared to
layered rocksalts
• Better structural stability upon Li removal
• Isotropic; hence Li can diffuse in 3D

Difficulties modelling DRX using density
functional theory (DFT)
• Many possible configurations
• High computational costs for large

supercells

Need a computational technique 
which can provide ‘quick’ and 

‘accurate’ estimates of energies and 
atomic forces to model disordered 

multi-component systems4

Machine-learning interatomic potentials (MLIPs)

Ordered LiTMO2

Ordered TMO2

Disordered LiTMO2

Disordered TMO2

Multi-species disordered TMO2

Multi-species disordered LiTMO2

Literature

Pymatgen5

Dataset

Machine learning
𝑌 = 𝑓(𝑋;𝑤)

AENET GAP SNAP MTP

Crystal structures 

Check error
(Energy, Force)

Best 
Model

Y (Energies, Forces)

vs.
Model voltages

DFT voltages

Feedback

DFT

DFT properties 

The LiTMO2 DRX data set was generated by enumerating Li and TM (transition 
metals)  arrangements within the cation sublattice of the rocksalt structure

(TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu ), Total Structures = 10842

Hubbard U corrected DFT 
calculations using the PBE6 with 

PAW7,8 potentials,  as 
implemented in the Vienna ab 

initio simulation package (VASP)9

• Mathematical representation of the potential energy
surface (PES)4

• Map the atomic configuration of a structure to its
total energy (by minimizing the loss function)

MLIP
MTP (moment tensor 

potential)10
SNAP (spectral neighbor 

analysis potential)11
GAP (Gaussian 

approximation potential)12
AENET (atomic 

energy network)13

Idea

Many-body interactions 
within a cut-off radius 

represented via moment 
tensors

Local atomic density 
(weighted delta 

functions) projected on a 
4D hypersphere

Local atomic density 
modelled via a smooth 

overlap of atomic positions 
(SOAP) kernel

Feed forward neural 
network with local 

bonding environment 
as the input layer

Descriptor

Moment tensors consisting 
of radial distribution 
functions and outer 

products of position vectors 
of neigboring atoms

Hyperspherical
projection of atomic 
density expanded in 
terms of bispectrum

components

Atomic density as weighted 
sum of Gaussians

Radial and angular 
distribution functions

Training 
algorithm

Broyden-Fletcher-Goldfarb-
Shanno (BFGS) Linear regression Gaussian process regression Limited memory 

BFGS

Basis 
functions

Chebychev polynomials (for 
radial basis) and contracted 

moment tensors

Hyperspherical
harmonics

Equispaced Gaussians (for 
radial basis) and spherical 

harmonics (for angular basis)

Chebychev
polynomials

*Perdew-Burke-Ernzerhof (PBE), projector-augmented wave (PAW) 

• AENET’s root mean squared errors (RMSE) ~7.5
meV/atom on energies: similar to DFT (~1 meV/atom)

• SNAP: largest errors on energies

• Energy errors decrease with increasing dataset size for
all MLIPs (except MTP): improvement in accuracy

• AENET and GAP display similar energy RMSEs in
training and testing for all large datasets: improvement
in transferability

• MTP and SNAP: good accuracy and transferability on
force predictions

Training errors Test errors 
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Used a single core of a Intel® Xeon® Gold 6271 CPU, with a maximum random access memory of 128 Gigabytes, without 
any hyperthreading for training all MLIPs

• MTP train time ~ 2 X (AENET train time )

• MTP is the slowest to train for all
dataset sizes, followed by GAP

• MTP and GAP: harder to train with
increasing dataset sizes

• AENET: training time depends on
number of epochs

• Increase in training time is more rapid
with increasing epochs for larger
datasets

AENET AENET

• Energy RMSEs for the training set decreases
steadily with increasing epochs

• Rapid increase in computational time for the
full 10842 dataset may not be worth the
marginal gain in accuracy, after 2300 epochs

• The accuracy in predicting material properties is critical for evaluating the performance and determining the utility of MLIPs
• Prediction of average intercalation voltages, in ordered, layered, single-TM LiTMO2 as a test of accuracy, versus DFT calculations
• AENET does suffer from a compounding of error versus DFT, voltage errors: 10.05% against DFT,  largest voltage errors: LiFeO2 and LiTiO2
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Data and code

• We have quantified the accuracy, transferability, and ease of training of five atom-centered MLIPs
(MTP, SNAP, GAP, and AENET), in their ability to model the PES of disordered, 11-component, LiTMO2
compositions

• AENET : best potential for predicting total energies. MTP: the best performer for atomic forces

• AENET and GAP overfit for small datasets, improve considerably with increase in dataset size

• AENET (MTP) exhibit the smallest (largest) computational training time

• Our work should aid in the discovery of novel DRX cathodes and in modelling complex, disordered
systems
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RMSE=0.048
.

LiTMO2
RMSE=0.154
TMO2 RMSE=0.375
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