

MACHINE LEARNING BASICS

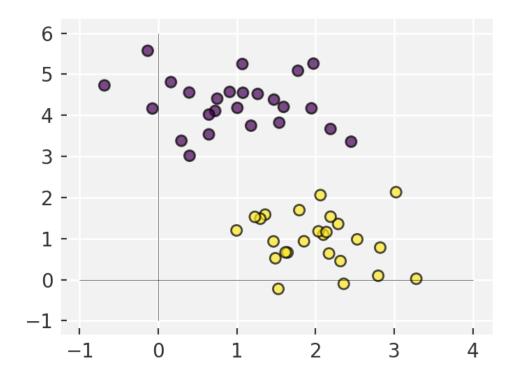
Keith Butler

Overview

- Types of ML
- Parameters and hyperparameters
- Features
- Decision trees
- Evaluation/metrics
- Overfitting
- Bagging and boosting

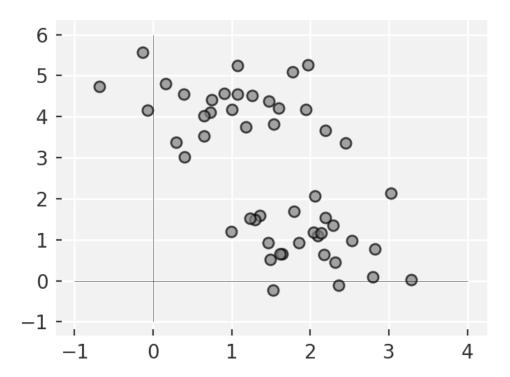
SUPERVISED ML

Learning a function that maps an input to an output based on example input-output pairs.



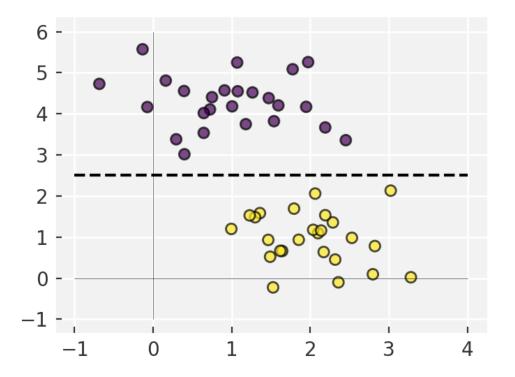
UNSUPERVISED ML

Data do not have labels, identifying trends in unlabelled datasets



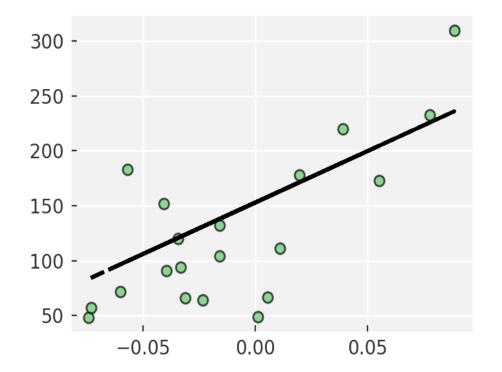
CLASSIFICATION

Identifying to which of a set of categories a new sample belongs, on the basis of a training set



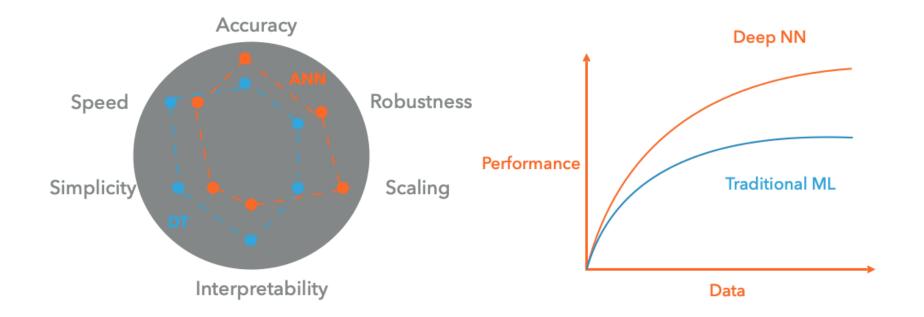
REGRESSION

Models a target prediction value based on independent variables



CLASSICAL/DEEP METHODS

- Classical: linear regression, trees etc..
- Deep: neural network type models



PARAMETERS AND HYPER-PARAMETERS

- Parameters properties of the model that are modified during training
- Hyperparameters set of values that define the model and how it trains.
 Do not update during training
 - E.g. loss function, learning rate, number of parameters

FEATURES

- In ML approaches the data will typically consist of several or more features
- Features are simply the input variables for the model x in f(x) = y

"...some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."

FEATURE ENGINEERING

- Transforming raw data into features that better represent the underlying problem
- Make inputs into things that an algorithm can understand
- E.g. Convert a date-time stamp into something more useful 2014-09-20T20:45:40Z -> Day: Tuesday; Year: 2014; Month: Sept
- Note that 'Tuesday' and 'Sept' are not particularly algorithm ready how can we convert them to something more useful?

One hot encoding

Vector of length = number of categories

Each element is the probability that the data represents a given class

Material	Ortho	Rhomb
b=a	1	0
	0	1

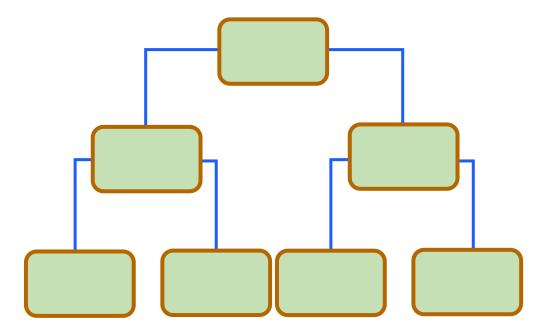
BUILDING BLOCK: ONE HOT ENCODER

from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

```
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values)
print(integer_encoded)
```

```
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
```

DECISION TREES



Data is split by features. E.g. brightness of a pixel Splits are arranged such that the data splits as evenly as possible at each point.

DECISION TREES

$$\begin{aligned} Q_{left}(\theta) &= (x, y) | x_f \leq t_j \\ Q_{right}(\theta) &= Q \setminus Q_{left}(\theta) \end{aligned}$$

Data is split according to a threshold value tj.

$$C(Q,\theta) = \frac{n_{left}}{N_j} H(Q_{left}(\theta)) + \frac{n_{right}}{N_j} H(Q_{right}(\theta))$$

$$\theta^* = \underset{\theta}{\operatorname{argmin}}C(Q, \theta)$$

The cost of the split is calculated based on some impurity function H() e.g. RMSD of the data.

The splitting parameters are chosen to minimise C at each split.

GO TO NOTEBOOK

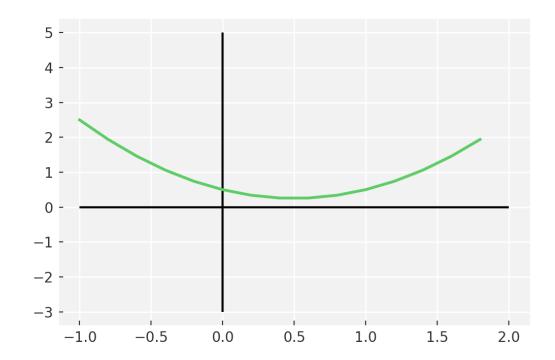
OPTIMISATION/EVALUATION

- Evaluation
 - Objective function or scoring function.
 - Distinguish good from bad models.
- Objective function = loss function = cost function
 - Must faithfully represent the "goodness" of a model in a single number

EVALUATION METRICS

$$MSE = \frac{1}{N} \sum (f_i - y_i)^2$$

- Mean squared error
- Used in regression
- Square endures a single minimum
- Avoids local minima trapping
- Easy to calculate



$$MAE = \frac{1}{N} \sum |f_i - y_i|$$

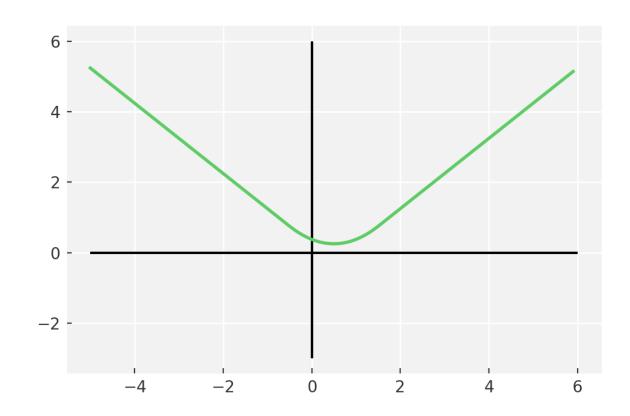
- Mean Absolute Error
- Similar to MSE
- No quadric term
- More robust to outliers
- MSE penalises large differences much more than MAE
- Large gradients close to zero slow to optimise



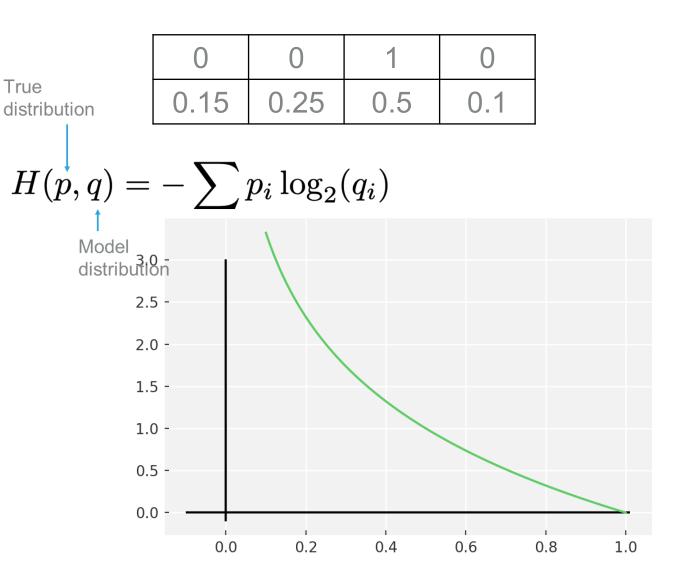
$$L_{\delta}(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for}|y-f(x)| \leq \delta, \ \delta \, |y-f(x)| - rac{1}{2}\delta^2 & ext{otherwise.} \end{cases}$$

Huber loss

- Quadratic close to the minimum
- Linear far from the minimum
- Overcomes problems of MSE and MAE
- More expensive to calculate



- Cross entropy
- Used for classification problems
- Tells us how similar our model distribution is to the true distribution
- Penalises all errors, but especially those that are most inaccurate



- Hinge loss
- Used for classification
- Does not seek to reproduce the distribution of data

$$L = max(0, 1 - t \cdot y)$$

• 0 as long as the classification is correct

Prediction

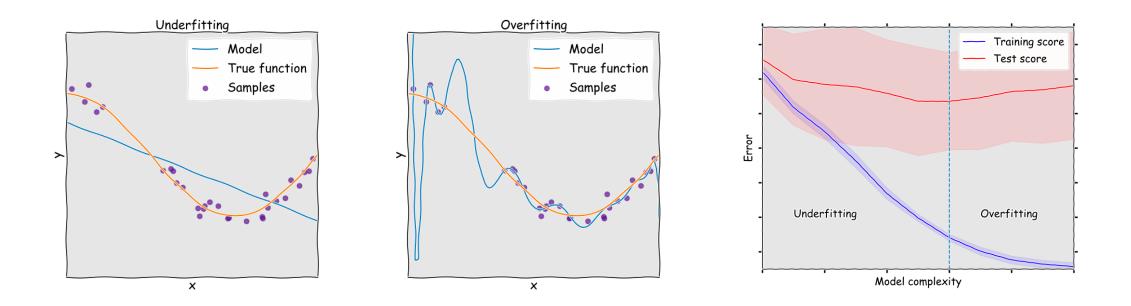
Label(+/-1)

EVALUATION: TABLE OF CONFUSION

		COND			
		CONDITION determined by "Gold Standard"			
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCE CONDITION POS TOTAL POPULATION	
TEST OUT- COME	TEST POS	True Pos TP	<i>Type I Error</i> False Pos FP	Precision Pos Predictive Value PPV = <u>TP</u> TEST P	False Discovery Rate FDR = <u>FP</u> TEST P
	TEST NEG	<i>Type II Error</i> False Neg FN	True Neg TN	False Omission Rate FOR = <u>FN</u> TEST N	Neg Predictive Value NPV = <u>TN</u> TEST N
	ACCURACY ACC ACC = <u>TP + TN</u> TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR = <u>TP</u> CONDITION POS Miss Rate False Neg Rate FNR FNR = <u>FN</u> CONDITION POS	Fall-Out False Pos Rate FPR FPR = <u>FP</u> CONDITION NEG Specificity (SPC) True Neg Rate TNR TNR = <u>TN</u> CONDITION NEG	Pos Likelihood Ratio LR + LR + = <u>TPR</u> FPR Neg Likelihood Ratio LR - LR - = <u>TNR</u> FNR	Diagnostic Odds Ratio DOR DOR = <u>LR +</u> LR -

https://en.wikipedia.org/wiki/Confusion_matrix

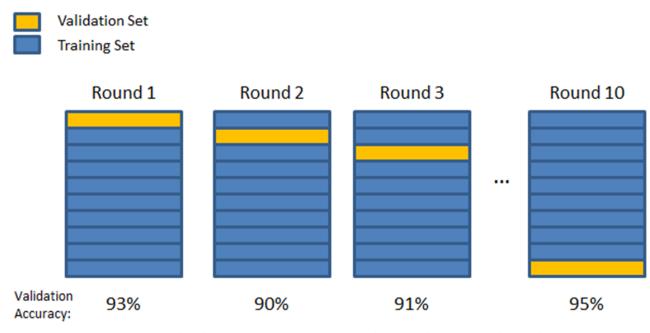
If a model is not expressive enough or is too expressive it is detrimental to predictive power



TEST AND VALIDATION SETS

- The model must always be validated on data not used for testing
- Often something like 20% of data is used for validation
- Make sure that validation and training distributions are the same (usually)

n-fold cross validation allow us to use all the data for training and gives statistical errors



Final Accuracy = Average(Round 1, Round 2, ...)

BUILDING BLOCK CROSS VALIDATION

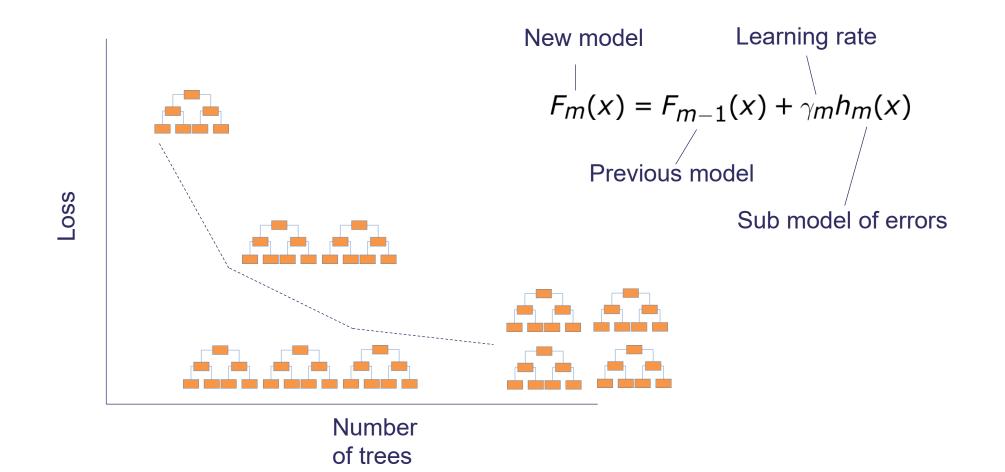
```
from sklearn.model_selection import
cross_val_score
clf = svm.SVC(kernel='linear', C=1)
scores = cross_val_score(clf, X, y, cv=5)
```

GO TO NOTEBOOK

BOOSTING + BAGGING

- To overcome the limitations of a weak learner we can use booting or bagging.
- Both methods use an ensemble of weak learners to build a strong learner
- Boosting choose next learner based on the errors of the last learner (gradient boosted decision trees)
- Bagging stochastically choose next learners (random forests)

BOOSTED DECISION TREES



BUILDING BLOCK: BOOSTED DECISION TREE

from sklearn import ensemble

```
gbr = ensemble.GradientBoostingRegressor(loss='lad', max_depth
= 10, learning_rate = 0.015, min_samples_split = 50,
min_samples_leaf = 1, max_features = len(cols), subsample =
0.9, n estimators = 300)
```

gbr.fit(X, y)

GO TO NOTEBOOK

CONCEPT CHECKLIST

Supervised/unsupervised machine learning

Classical machine learning/deep learning

Parameters/hyperparameters

Features and feature engineering

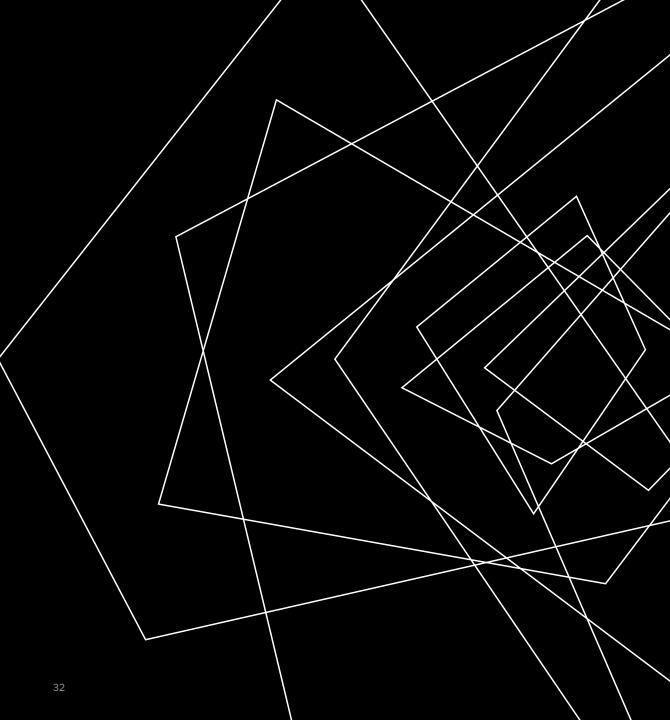
Decision trees

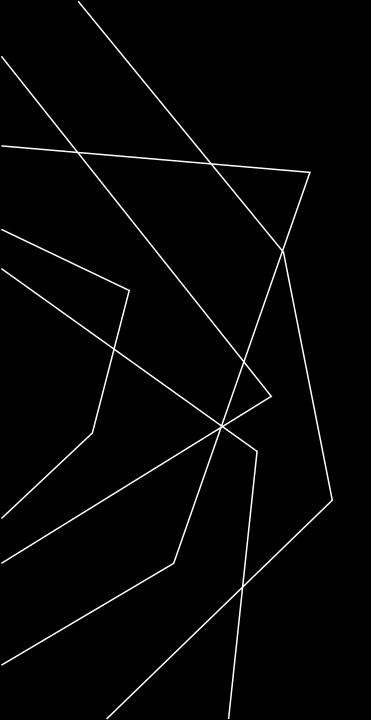
Overfitting

Evaluation/metrics

Test/train split, cross-validation

Bagging and boosting





THANK YOU

mdi-group.github.com