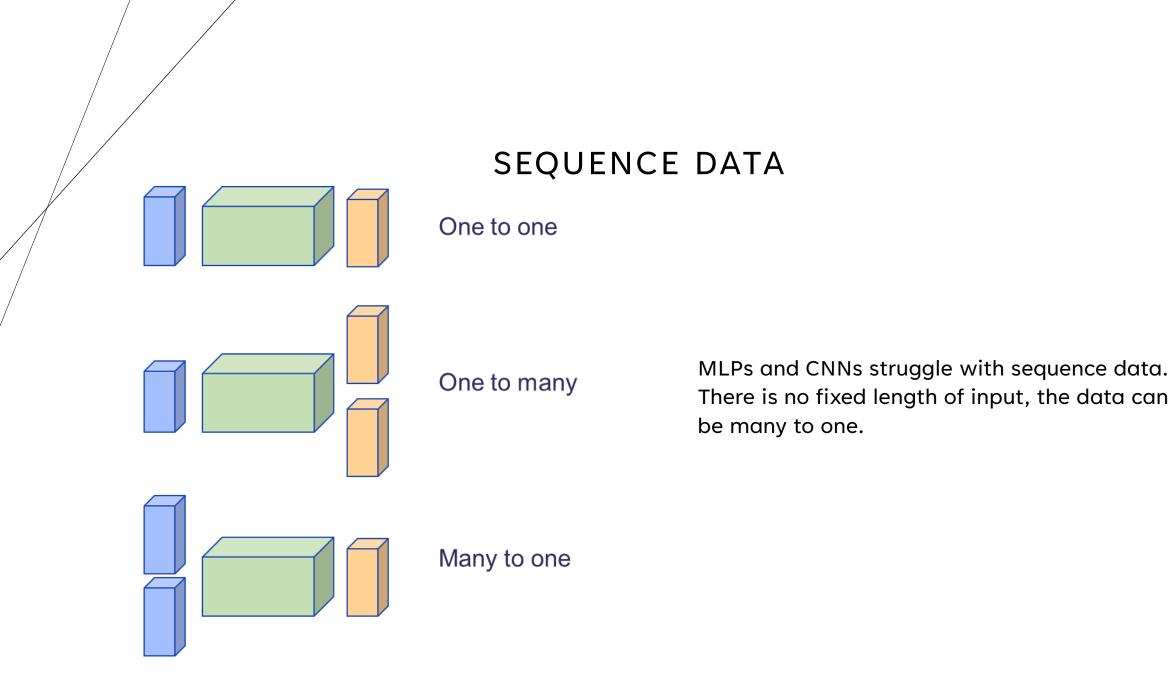
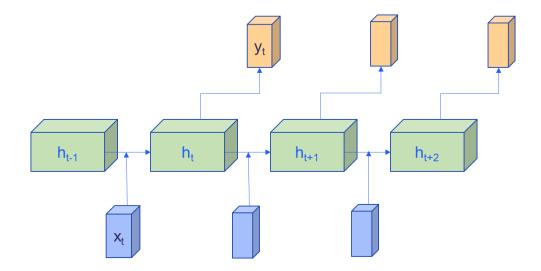


SEQUENCES AND LANGUAGE MODELS

Keith Butler



RECURRENT NEURAL NETWORKS (RNNS)



 $h_t = f_w(W_{hh}h_{t-1}, W_{xh}x_t)$

ISSUES WITH RNNS

RNNs have very short term memory – they lose context quickly

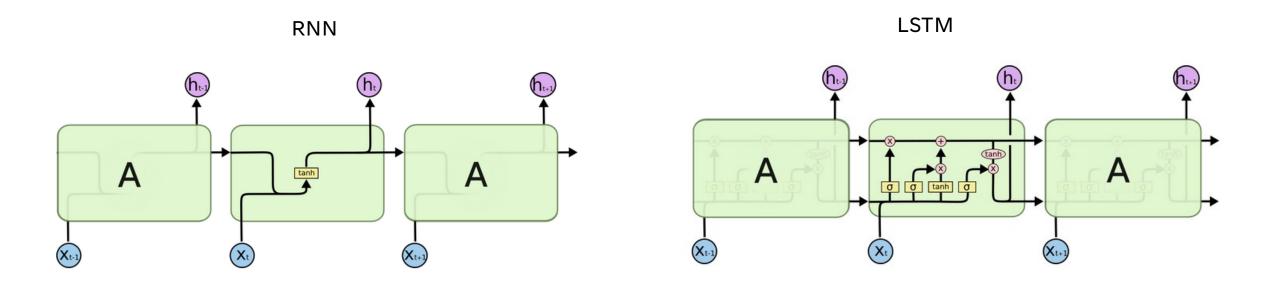
The clouds are in the

I was born in France. At the age of 16 I moved country. I have lived here since I was 21. Nonetheless, I still speak

fluent ____. ×

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

INTRODUCING MEMORY

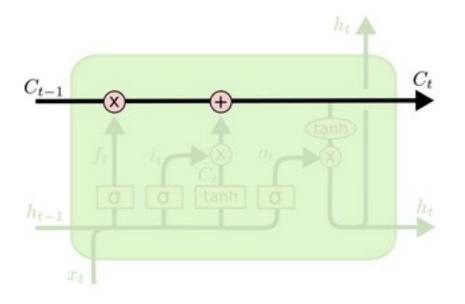


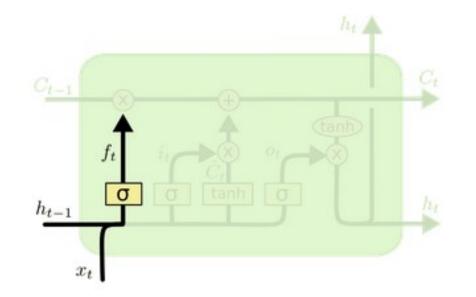
Long short term memory (LSTM) networks introduce extra memory features compared to a standard RNN

LSTM – THE MEMORY STATE

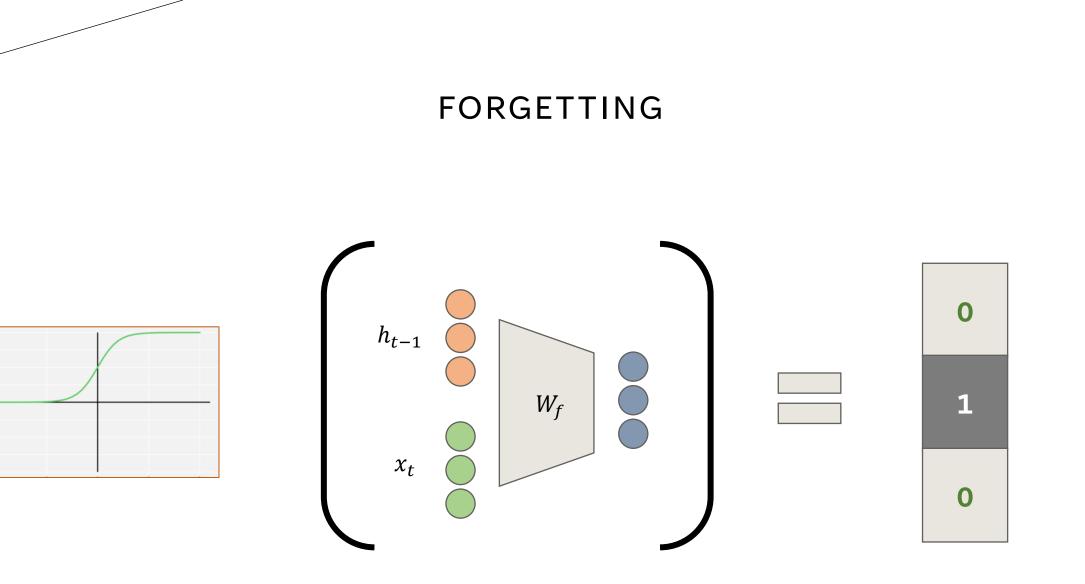
A single channel that runs all the way along the sequence structure

Only has some minor interactions with the rest of the network



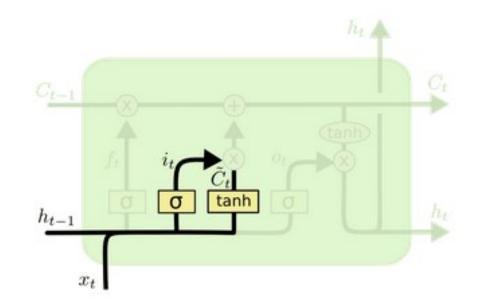


$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$



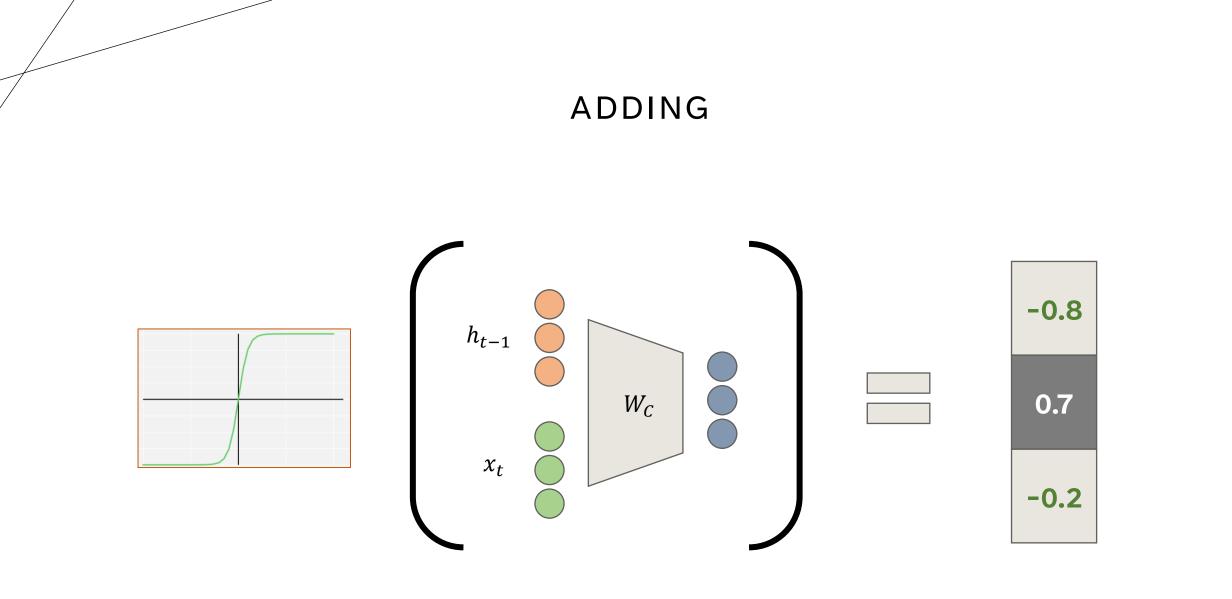
 $f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

LSTMS - ADDING



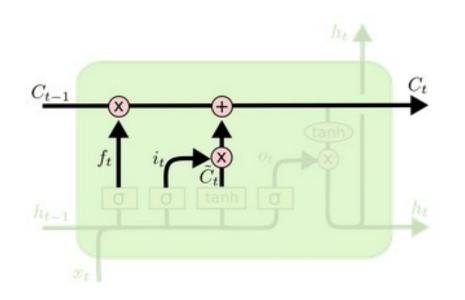
$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = tanh \left(W_C \cdot [h_{t-1}, x_t] + b_C \right)$$



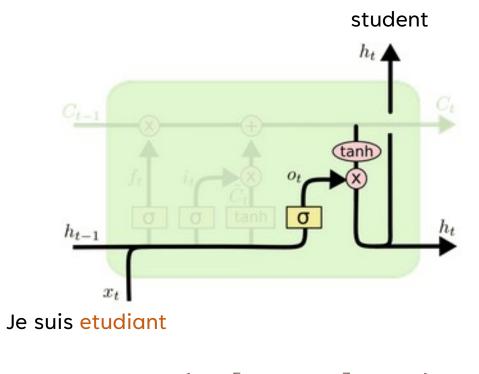
 $\tilde{C}_t = tanh\left(W_C \cdot [h_{t-1}, x_t] + b_C\right)$

LSTM – UPDATING THE MEMORY



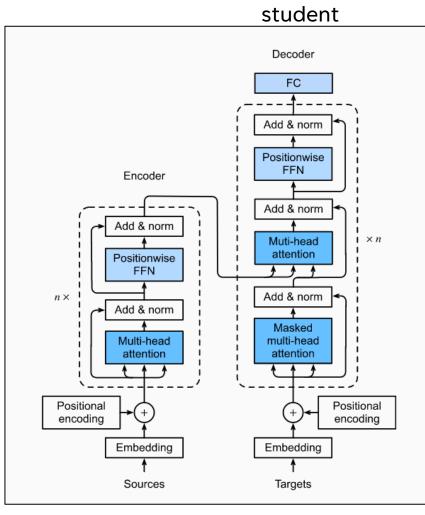
$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM – GENERATE OUTPUT



$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

TRANSFORMERS



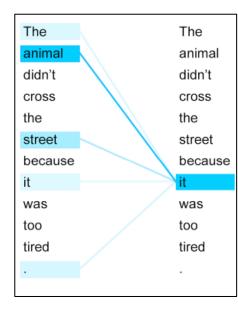
Je suis etudiant I am a

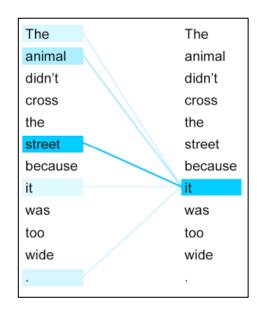
THE ATTENTION MECHANISM

We use attention to "focus" on some part of interest in an input

SELF-ATTENTION

With self-attention, each token t_n can "attend to" all other tokens of the same sequence when computing this token's embedding x_n





HOW SELF-ATTENTION WORKS

Attention Is All You Need

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

Based of the concept of query, key and value vectors

arXiv:1706.03762 (2017)

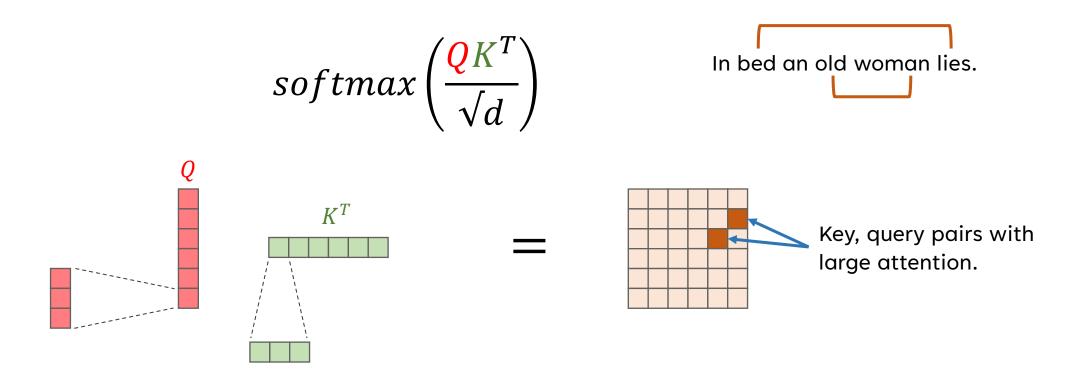
ATTENTION - THE INPUTS

Each token has a d-dimensional representation

Each token also has a query and key vector q-dimensional; q << d W_K is a matrix of learnable weights

In bed an old woman lies.

QUERY KEY MULTIPLICATION

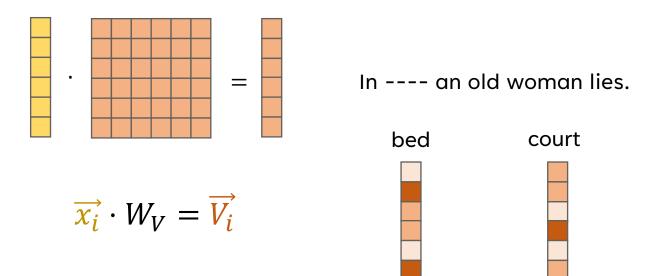


Softmax normalises the columns; root of d makes it numerically stable

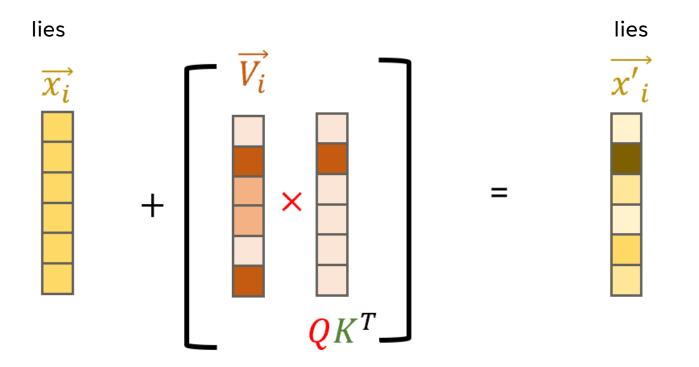
NOTE – in this case each cube in Q and K has 3 dimensions

THE VALUE MATRIX

Tells you how a given token modifies another token The resultant \vec{V} gets added to the other vector The extent of the addition is scaled by the QK^T product

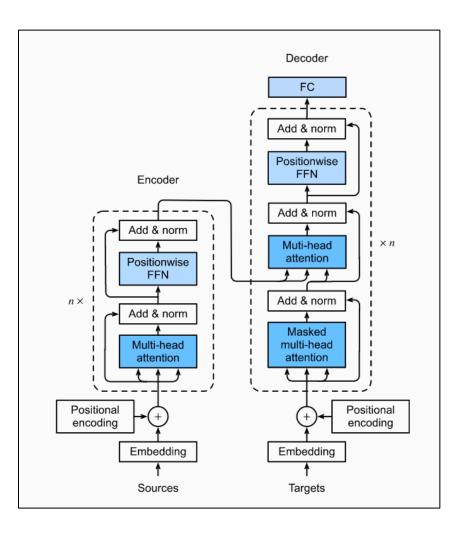


ADDING THE VALUE TO THE EMBEDDING



The value is modified by the attention from the QK pair and added to the initial embedding

UPDATING THE EMBEDDINGS

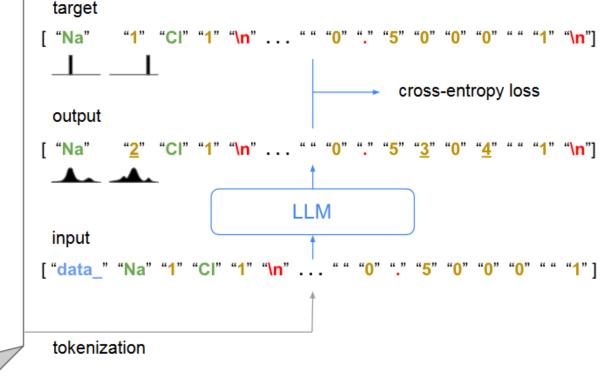


$$E \longrightarrow softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V \longrightarrow E'$$

Each of these softmax matrix multiplications is a 'head'

CRYSTALLM

data Na1Cl1 _symmetry_space_group_name_H-M 'P1' _cell_length_a 3.9893 cell length b 3.9893 cell length c 3.9893 _cell_angle_alpha 60.0000 cell angle beta 60.0000 cell angle gamma 60.0000 _symmetry_Int_Tables_number 1 chemical formula structural NaCl chemical formula sum 'Na1 Cl1' cell volume 44.8931 cell formula units Z 1 loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 'x, y, z' loop _atom_site_type_symbol _atom_site_label _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y atom site fract z atom site occupancy CI CI0 1 0.0000 0.0000 0.0000 1 Na Na1 1 0.5000 0.5000 0.5000 1

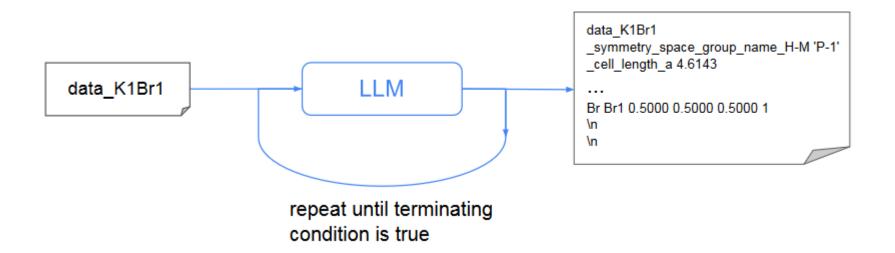


A decoder only transformer trained on cif files for materials structure generation

Nature Communications 15, 1 (2024)

AUTOREGRESSIVE GENERATION

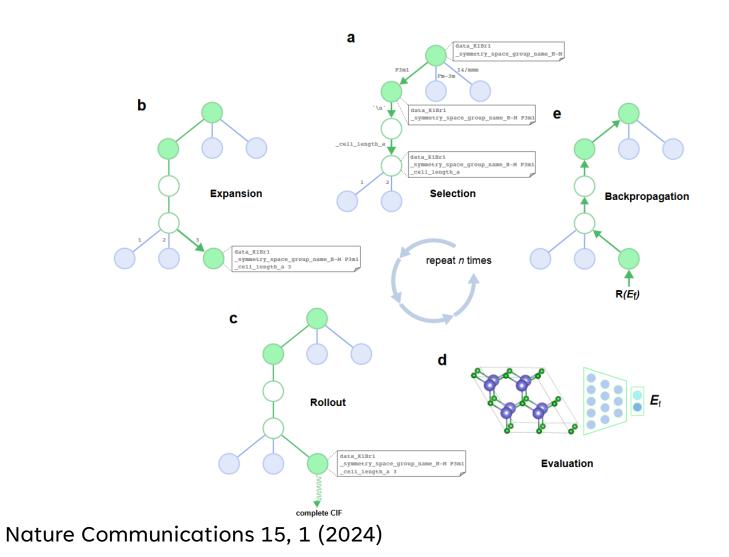
After training, CrystaLLM can be prompted with new text and can produce a predicted complete cif



Prompting is flexible so we can provide as little or as much information as we like

Nature Communications 15, 1 (2024)

MONTE CARLO TREE SEARCH FOR CONSISTENCY



Autoregressive generation is stochastic and can lead to non-ideal structures

MCTS is more expensive but uses an energy estimator to drive to low energy solutions

CONCEPT CHECKLIST

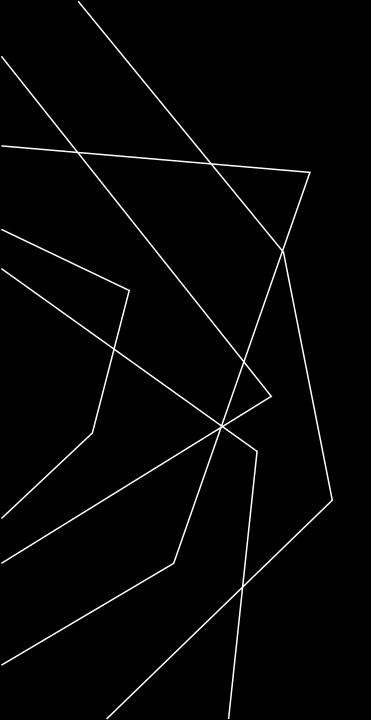
Sequential data benefits from contextual awareness and memory

Recurrent networks are an early answer

Memory was improved with LSTMs

Transformers use attention to map across sequences

Autoregression can be applied to generate crystal structures



THANK YOU

mdi-group.github.com