e
NZd

INTRODUCTION TO
DEEP LEARNING

eeeeeeeeeee

WHAT WE WILL COVER

The difference between deep and classical learning
The concept of representation learning

The structure of a simple multi-layer perceptron

How to write an MLP in PyTorch

How a NN learns — optimisation and backpropagation
The power of inductive bias

The structure of a simple convolutional neural network

CLASSICAL/DEEP METHODS

* Classical: linear regression, trees etc..

* Deep: neural network type models

Accuracy Deep NN

Speed Robustness

Performance

Simplicity Scaling Traditional ML

Interpretability Data

v

DEEP LEARNING AS REPRESENTATION LEARNING

J “Hand-crafted” features

Classical ML f(ZE) _
Deep learning f(f(@)) =

Unstructured data

DEEP LEARNING AS REPRESENTATION LEARNING

Deep learning

Classification model

f(aj) =Y Cat/Snake

Classical ML

Number of eyes 2

Whiskers

Legs

Scales Y

NEURAL NETWORKS

Originally an analogue device intended for binary classification

Produces a single output from a matrix of inputs, weights and biases

NEURAL NETWORKS

Minsky and Papert showed they could not solve non-linear classification

II
AND Expanded Edition
I I, out \
0 0 0
0 1 0
1 0 0
1|1 1
! XOR
[I out
o |o |o
, Perceptrons
|| 3 1 0 1
1 1 0
OR
l, I, out
0 0 0 (1.0) (o T — O (1, 1)
o [1 |1 '
T To T N |
1 1 |1 \ i
.) >

./ . o
1, Marvin L. Minsky
(0,0) \ (0, 1) Seymour A. Papert

CHANGE OF FUNCTION

y=¢() wizi +b) = p(wx+D)

(a) (b) a(x)

Jf

SIGMOID NON-LINEARITY

A differentiable non-linearity allows for multiple layers

//A\\"’ 1\ Ik \\'/‘\
g
/ ‘Elo{iﬁﬁfl"'li”““ i\ ""\\\

" WSV S\ N
/‘ W YO /“w"c»,‘\

\J
M

‘V v‘v" ‘0"‘ "\ :‘:'A ‘sé‘x “\ \""'A ‘0'0: "\ “.ﬁ.
‘“ OORK PR HARE ;l'»\\
M‘ '/w lm \o u ln\ u /ww«u\ /]
J N «'\ /9» 4’\
/ " ’ N 0> AN * ,

’I/\\\."/\\\ /l/\\\
X \‘ },‘§ 1% \/ ,‘Ai«\\
I/ N\ ” “ ” “
\\\‘///‘ V//‘\\V N

DEEP NEURAL NETWORKS: MULTI LAYER PERCEPTRON

'\ N<
¥l /6\ A
«M/ \»u / \»u«/
2 ’/ N 1:,,.\

QW

" l} k\ 0
‘\\ \\» "0 " 4 ‘: :‘ 4' ’40 \\" \; 4; '; ‘
I

IRAXK I /\ /\ A
’«" < 'O'UJ @ 'M »0' i 'Oo“’O'

,“ G e
%:\ ‘\\ ?; n\ \\.//;m» ‘\"‘\\./I , » «\ .\\\'
'I'/ \\\\ Il, /‘\ /AN
R \V 5 «\& i M i M./
/NN ’ X
\\\//,‘ V2 N \V/ ‘\\\

AAAAA

Input layer

Hidden layers

Output layer

DENSE LAYERS

Also called fully connected layers as each node is connected to each node in
the previous layer

x Activation function

y = g(2)

Output signal

Z = WT.x_I'b—Bias
X |

Weights Input signals

ACTIVATION FUNCTION: LINEAR

The simplest activation is a linear transformation of the weights matrix

10 -

_10 i I I I I I
~10 -5 0 5 10

ACTIVATION FUNCTION: SIGMOID

As we saw earlier sigmoid was the first non-linearity (after the step
function)

1.00 -
0.75 -
0.50 -
0.25 -

0.00 -

—0.25 -

—0.50 -

—0.75 -

_1.00 i | | 1 | |
~10 -5 0 5 10

ACTIVATION FUNCTION: TANH

Like sigmoid, but zero-centered, converges better than sigmoid

1.00 -
0.75 -
0.50 -
0.25 -

0.00 -

—0.25 -

—0.50 -

—0.75 -

_1.00) I | I I I
~10 -5 0 5 10

ACTIVATION FUNCTION: RELU

The rectified linear unit (ReLU) has 6 x improvement in convergence from Tanh function

10 -

-10 -5 0 5 10

ACTIVATION FUNCTION: LEAKYRELU

ReLU can still lead to vanisihing gradients, leaky ReLU attempts to circumvent this

10 -

—10 -5 0 5 10

WRITING A DNN IN PYTORCH

class MLP (nn.Module) :

def

def

__init (self, input dim, output dim):
super (). init ()
self.input fc = nn.Linear (input dim, 250)

self.hidden fc = nn.Linear (250, 100)

self.output fc nn.Linear (100, output dim)

forward(self, Xx):

batch size = x.shape[0]

x = X.view(batch size, -1)

h 1 = F.relu(self.input fc(x))

h 2 F.relu(self.hidden fc(h 1))

y pred = self.output fc(h 2)

return y pred, h 2

Go to notebook

BACK PROPAGATION

dL
dy

Loss (L)

wb
=S

OOO — OOO

OPTIMISATION STOCHASTIC GRADIENT DESCENT

* Gradient descent — calculate the gradient of the loss of the entire set with
respect to parameters

* SGD - calculated per sample rather than on the entire batch
* Much quicker to calculate, but can lead to high variance

* Mini-batch SGD - calculate loss gradient on batches of set size
* Best of both worlds

OPTIMISATION: ADAPTIVE METHODS

* Some parameters update much more often than others

* Therefore different learning rates can be appropriate for
different parameters

* Adagrad modifies the learning rate n at each time step for
every parameter based on the past gradients computed for
that parameter

Current gradient
Old parameter /

New parameter \ T’

0, =01 \/G ggt
t
e

Sum of previous gradients

OPTIMISATION: ADAM

* Similar to Adagrad

e Add in information about the mean of the momentum of
previous steps too

* Works very well in most situations

Mean of last n gradients

Old parameter /
New parameter \

- N
thgt—l \/E-l-gm

.

Variance of last n gradients

BUILDING BLOCK: ADAM OPTIMIZER

import torch.optim as optim

optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropylLoss ()

BUILDING BLOCK — A TRAINING LOOP

def train (model, iterator, optimizer, criterion, device):

epoch loss = 0
epoch acc = 0

model.train ()
for (x, y) in tgdm(iterator, desc="Training", leave=False):

X = xX.to(device)
y y.to (device)

optimizer.zero grad() GO to notebOOk

y _pred, = model (x)

loss = criterion(y pred, vy)

acc = calculate accuracy(y pred, vy)
loss.backward ()

optimizer.step ()

epoch loss += loss.item()
epoch acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

CONCEPT CHECKLIST

Deep learning is a qualitatively different
process to classical ML

Deep learning generally requires more data

than classical ML

Deep learning relies on representation

learning

How to write and train a neural network in

PyTorch

24

THANK YOU
’ mdi-group.github.com

e
NZd

DEEP LEARNING 2:
CONVOLUTIONS

eeeeeeeeeee

CONVOLUTIONAL NEURAL NETS: THE POWER OF INDUCTIVE BIAS

The Need for Biases in Learning Generalizations

Tom M. Mitchell

The inductive bias (also known as learning bias) of a learning algorithm is the
set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110, New
Brunswick, New Jersey, USA: Rutgers University

OVERVIEW

Intro to convolutional neural networks
Building blocks of CNNs

Deep CNNs

Advanced CNNs - Residual blocks

DRAWBACKS OF MLPS

MLPs have no spatial awareness and also suffer from parametric explosions as the input gets larger

1011_
10° -
e 107
5 B
)
()
E 105_
©
| -
& 103
101 - — Dense
Convolutional
0 100 200 300 400 500

Image size

EARLY CNNS

LeCun - restricting the number of parameters in a NN leads to better generalisation

Generalization and Network
Design Strategies
Y. le Cun

Department of Computer Science
University of Toronto

Technical Report CRG-TR-89-4
June 1989

10 10

4x4 4x4x4

8x8x2 8x8x2
\\ |

16x16 16x16

Figure 5 two network architectures with shared weights: Net-4 and Net-5

% correct on test set

100 [

training epochs

STRUCTURE OF A CONVOLUTIONAL LAYER

Typical convolutional layers have three main ingredients:

= Kernel
- Pooling Extract Sum
= Activation 1]l 4]3]s 143 1| 0]-1 1|03 8|l -2

5/1211]|5 521X2o-2=100-2 5

4l 71212 472 1]0/-1 4|02

61098

Kernel, 3x3
Output, 5x5

Input, 7x7

CONVOLUTION IN ACTION: KERNEL

" |nput + kernel -> activation map

Extract Sum

\ 4 A 4
11141315 11413 110(-1 1]10(-3 8||-2
5([2]1]|5 521X20-2=1oo-2 5
411712 |2 4 (7|2 110]-1 410 |-2
6(0(9]|8

Kernel, 3x3
Output, 5x5

Input, 7x7

CONVOLUTION IN ACTION: PADDING

* Padding around the outside of images
= Zero pad: pad with zeros to make torch.nn.ZeroPad2d (padding)
* No padding output.shape < input.shape

oflofofoflo]o]ofo]o:
0 0:
0 0
0 0;

m) 0 o mmp
‘0 0:

Padding i Y Convolve
to]o]ofofofo[ofo]o:

lnput, 7x7 T ' Output, 7x7

Stride

Stride = 2

CONVOLUTION IN ACTION: STRIDING

Controls how the filter slides across the image

Input, 7x7

W —F,+ 2P
output width = 5 L + 1
m) v
Convolve
Output, 3x3
H — Fy + 2P
output height = Sh + +1
h

GO TO NOTEBOOK

Let’s try building and understanding some filters

.shape[@]
.shape[1]
.shape[2]

- .zeros(
[
.shape[@]
- .zeros(

.arange(

.arange(
X

[

.tensordot(

.maximum(
= .minimum(

CONVOLUTION IN ACTION: POOLING

Pooling compresses information content between layers

Max Pool (2, 2)

The most commonly used pooling is choosing the maximum value patchwise; max pooling

CONVOLUTION IN ACTION: PUTTING IT TOGETHER

Output — 3 channels
reduced dimensions

Input image — 1 channel Activations — 3 channels

i Activation Max

function pooling
3 filters

(224, 224, 64) A DEEP CNN

VGG-16
(112, 112, 128)
(w, h, c)
(56, 56, 256)
(28, 28, 512)

(14, 14, 1024)

. Conv + ReLU
_ Max Pool

. Fully connected (dense) layer

BATCH NORMALISATION

Normalise the outputs from intermediate layers

Batch
normalization

I

Max
pooling

Makes weights deep in the NN more robust to changes early in the NN

BUILDING BLOCKS: CONVOLUTION BLOCK

import torch

import as nn
import as F
nn in_channels=1, out channels=6,kernel size=5

F X, kernel size=2

Hierarchy of filters

" Stacking deep networks means that different levels of features are learned
at different depths

Texture Parts
S

Advanced CNNs: Residual blocks

" A connection that passes the input over a
block of convolutions

» Useful in very deep architectures
" Allows network to learn to skip blocks

" Allows gradient to pass back through the
network more effectively in backprop

CONCEPT CHECKLIST

Origins of convolutional neural
networks

Building blocks of CNNs - kernel,
padding, stride

Max pooling

Deep CNNs

Batch normalisation

Feature detection in different layers

Residual blocks

18

THANK YOU
’ mdi-group.github.com

	Slide 1: Introduction to deep learning
	Slide 2: WHAT WE WILL COVER
	Slide 3: CLASSICAL/DEEP METHODS
	Slide 4: DEEP LEARNING AS REPRESENTATION LEARNING
	Slide 5: DEEP LEARNING AS REPRESENTATION LEARNING
	Slide 6: NEURAL NETWORKS
	Slide 7: NEURAL NETWORKS
	Slide 8: CHANGE OF FUNCTION
	Slide 9: SIGMOID NON-LINEARITY
	Slide 10: DEEP NEURAL NETWORKS: MULTI LAYER PERCEPTRON
	Slide 11: DENSE LAYERS
	Slide 12: ACTIVATION FUNCTION: LINEAR
	Slide 13: ACTIVATION FUNCTION: SIGMOID
	Slide 14: ACTIVATION FUNCTION: TANH
	Slide 15: ACTIVATION FUNCTION: RELU
	Slide 16: ACTIVATION FUNCTION: LEAKYRELU
	Slide 17: WRITING A DNN IN PYTORCH
	Slide 18
	Slide 19: OPTIMISATION STOCHASTIC GRADIENT DESCENT
	Slide 20: OPTIMISATION: ADAPTIVE METHODS
	Slide 21: OPTIMISATION: ADAM
	Slide 22: BUILDING BLOCK: ADAM OPTIMIZER
	Slide 23: BUILDING BLOCK – A TRAINING LOOP
	Slide 24: Concept checklist
	Slide 25: THANK YOU
	Slide 26: Elements

