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WHAT WE WILL COVER

• The difference between deep and classical learning 

• The concept of representation learning

• The structure of a simple multi-layer perceptron

• How to write an MLP in PyTorch

• How a NN learns – optimisation and backpropagation

• The power of inductive bias

• The structure of a simple convolutional neural network



CLASSICAL/DEEP METHODS

• Classical: linear regression, trees etc..

• Deep: neural network type models



DEEP LEARNING AS REPRESENTATION LEARNING

“Hand-crafted” features

Unstructured data

Classical ML

Deep learning



DEEP LEARNING AS REPRESENTATION LEARNING

Classical ML

Classification model

Deep learning

Number of eyes 2

Whiskers N

Legs N

…

Scales Y

Cat/Snake



NEURAL NETWORKS

Originally an analogue device intended for binary classification

Produces a single output from a matrix of inputs, weights and biases



NEURAL NETWORKS

Minsky and Papert showed they could not solve non-linear classification



CHANGE OF FUNCTION



SIGMOID NON-LINEARITY

A differentiable non-linearity allows for multiple layers



DEEP NEURAL NETWORKS: MULTI LAYER PERCEPTRON

Input layer Output layer

Hidden layers



DENSE LAYERS

Also called fully connected layers as each node is connected to each node in 
the previous layer
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ACTIVATION FUNCTION: LINEAR

The simplest activation is a linear transformation of the weights matrix



ACTIVATION FUNCTION: SIGMOID

As we saw earlier sigmoid was the first non-linearity (after the step 
function)



ACTIVATION FUNCTION: TANH

Like sigmoid, but zero-centered, converges better than sigmoid



ACTIVATION FUNCTION: RELU

The rectified linear unit (ReLU) has 6 x improvement in convergence from Tanh function



ACTIVATION FUNCTION: LEAKYRELU

ReLU can still lead to vanisihing gradients, leaky ReLU attempts to circumvent this



WRITING A DNN IN PYTORCH

class MLP(nn.Module):

    def __init__(self, input_dim, output_dim):

        super().__init__()

        self.input_fc = nn.Linear(input_dim, 250)

        self.hidden_fc = nn.Linear(250, 100)

        self.output_fc = nn.Linear(100, output_dim)

    def forward(self, x):

        batch_size = x.shape[0]

        x = x.view(batch_size, -1)

        h_1 = F.relu(self.input_fc(x))

        h_2 = F.relu(self.hidden_fc(h_1))

        y_pred = self.output_fc(h_2)

        return y_pred, h_2

Go to notebook
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OPTIMISATION STOCHASTIC GRADIENT DESCENT

• Gradient descent – calculate the gradient of the loss of the entire set with 
respect to parameters

• SGD – calculated per sample rather than on the entire batch
• Much quicker to calculate, but can lead to high variance 

• Mini-batch SGD – calculate loss gradient on batches of set size
• Best of both worlds



OPTIMISATION: ADAPTIVE METHODS

• Some parameters update much more often than others

• Therefore different learning rates can be appropriate for 
different parameters

• Adagrad modifies the learning rate η at each time step for 
every parameter based on the past gradients computed for 
that parameter

𝜃𝑡 = 𝜃𝑡−1  −
𝜂

𝐺𝑡 + 𝜀
𝑔𝑡
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Old parameter

Sum of previous gradients

Current gradient



OPTIMISATION: ADAM

• Similar to Adagrad

• Add in information about the mean of the momentum of 
previous steps too

• Works very well in most situations

𝜃𝑡 = 𝜃𝑡−1  −
𝜂

𝑣 + 𝜀
𝑚
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Old parameter

Variance of last n gradients

Mean of last n gradients



BUILDING BLOCK: ADAM OPTIMIZER

import torch.optim as optim

optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()



BUILDING BLOCK – A TRAINING LOOP

Go to notebook

def train(model, iterator, optimizer, criterion, device):

    epoch_loss = 0
    epoch_acc = 0

    model.train()

    for (x, y) in tqdm(iterator, desc="Training", leave=False):

        x = x.to(device)
        y = y.to(device)

        optimizer.zero_grad()

        y_pred, _ = model(x)

        loss = criterion(y_pred, y)

        acc = calculate_accuracy(y_pred, y)

        loss.backward()

        optimizer.step()

        epoch_loss += loss.item()
        epoch_acc += acc.item()

    return epoch_loss / len(iterator), epoch_acc / len(iterator)



CONCEPT CHECKLIST

Deep learning is a qualitatively different 
process to classical ML

Deep learning generally requires more data 
than classical ML

Deep learning relies on representation 
learning

How to write and train a neural network in 
PyTorch

24



THANK YOU
mdi-group.github.com
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DEEP LEARNING 2: 
CONVOLUTIONS
Keith Butler



CONVOLUTIONAL NEURAL NETS: THE POWER OF INDUCTIVE BIAS

The inductive bias (also known as learning bias) of a learning algorithm is the 
set of assumptions that the learner uses to predict outputs of given inputs 
that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110, New 
Brunswick, New Jersey, USA: Rutgers University



OVERVIEW

▪ Intro to convolutional neural networks
▪ Building blocks of CNNs
▪ Deep CNNs
▪ Advanced CNNs – Residual blocks



DRAWBACKS OF MLPS

MLPs have no spatial awareness and also suffer from parametric explosions as the input gets larger



EARLY CNNS

LeCun – restricting the number of parameters in a NN leads to better generalisation



STRUCTURE OF A CONVOLUTIONAL LAYER

Typical convolutional layers have three main ingredients:

▪ Kernel

▪ Pooling

▪ Activation



CONVOLUTION IN ACTION: KERNEL

▪ Input + kernel -> activation map



CONVOLUTION IN ACTION: PADDING

▪ Padding around the outside of images
▪ Zero pad: pad with zeros to make torch.nn.ZeroPad2d(padding)
▪ No padding output.shape < input.shape



CONVOLUTION IN ACTION: STRIDING

Controls how the filter slides across the image



GO TO NOTEBOOK

Let’s try building and understanding some filters



CONVOLUTION IN ACTION: POOLING

Pooling compresses information content between layers 

3 1

5 1

7 2

0 9

8 2

4 3

4 9

1 1

5 9

8 9

Max Pool (2, 2)

The most commonly used pooling is choosing the maximum value patchwise; max pooling



CONVOLUTION IN ACTION: PUTTING IT TOGETHER 

Input image – 1 channel

3 filters

Activation 
function

Activations – 3 channels

Max 
pooling

Output – 3 channels 
reduced dimensions



A DEEP CNN

Conv + ReLU

Max Pool

(224, 224, 64)

(112, 112, 128)

(56, 56, 256)

(28, 28, 512) (14, 14, 1024)

(w, h, c)

VGG-16

Fully connected (dense) layer



BATCH NORMALISATION

Normalise the outputs from intermediate layers

Makes weights deep in the NN more robust to changes early in the NN

Max 
pooling

Batch 
normalization



BUILDING BLOCKS: CONVOLUTION BLOCK

import torch

import torch.nn as nn

import torch.nn.functional as F

nn.Conv2d(in_channels=1, out_channels=6,kernel_size=5)

F.max_pool2d(x, kernel_size=2)



Hierarchy of filters

▪ Stacking deep networks means that different levels of features are learned 
at different depths

Edges

Texture
s

Parts



Advanced CNNs: Residual blocks

▪ A connection that passes the input over a 
block of convolutions

▪ Useful in very deep architectures

▪ Allows network to learn to skip blocks

▪ Allows gradient to pass back through the 
network more effectively in backprop



CONCEPT CHECKLIST

Origins of convolutional neural 
networks

Building blocks of CNNs – kernel, 
padding, stride

Max pooling

Deep CNNs

Batch normalisation

Feature detection in different layers

Residual blocks
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