
INTRODUCTION TO
DEEP LEARNING
Keith Butler

WHAT WE WILL COVER

• The difference between deep and classical learning

• The concept of representation learning

• The structure of a simple multi-layer perceptron

• How to write an MLP in PyTorch

• How a NN learns – optimisation and backpropagation

• The power of inductive bias

• The structure of a simple convolutional neural network

CLASSICAL/DEEP METHODS

• Classical: linear regression, trees etc..

• Deep: neural network type models

DEEP LEARNING AS REPRESENTATION LEARNING

“Hand-crafted” features

Unstructured data

Classical ML

Deep learning

DEEP LEARNING AS REPRESENTATION LEARNING

Classical ML

Classification model

Deep learning

Number of eyes 2

Whiskers N

Legs N

…

Scales Y

Cat/Snake

NEURAL NETWORKS

Originally an analogue device intended for binary classification

Produces a single output from a matrix of inputs, weights and biases

NEURAL NETWORKS

Minsky and Papert showed they could not solve non-linear classification

CHANGE OF FUNCTION

SIGMOID NON-LINEARITY

A differentiable non-linearity allows for multiple layers

DEEP NEURAL NETWORKS: MULTI LAYER PERCEPTRON

Input layer Output layer

Hidden layers

DENSE LAYERS

Also called fully connected layers as each node is connected to each node in
the previous layer

𝑦 = 𝑔 𝑧

𝑧 = 𝒘𝑇. 𝒙 + 𝑏
𝑥

𝑥

𝑥

𝑦

Weights

Bias

Input signals

Output signal

Activation function

ACTIVATION FUNCTION: LINEAR

The simplest activation is a linear transformation of the weights matrix

ACTIVATION FUNCTION: SIGMOID

As we saw earlier sigmoid was the first non-linearity (after the step
function)

ACTIVATION FUNCTION: TANH

Like sigmoid, but zero-centered, converges better than sigmoid

ACTIVATION FUNCTION: RELU

The rectified linear unit (ReLU) has 6 x improvement in convergence from Tanh function

ACTIVATION FUNCTION: LEAKYRELU

ReLU can still lead to vanisihing gradients, leaky ReLU attempts to circumvent this

WRITING A DNN IN PYTORCH

class MLP(nn.Module):

 def __init__(self, input_dim, output_dim):

 super().__init__()

 self.input_fc = nn.Linear(input_dim, 250)

 self.hidden_fc = nn.Linear(250, 100)

 self.output_fc = nn.Linear(100, output_dim)

 def forward(self, x):

 batch_size = x.shape[0]

 x = x.view(batch_size, -1)

 h_1 = F.relu(self.input_fc(x))

 h_2 = F.relu(self.hidden_fc(h_1))

 y_pred = self.output_fc(h_2)

 return y_pred, h_2

Go to notebook

𝒚𝟏 𝒚𝟐 𝒚𝟑

𝒅𝒚𝟏 𝒅𝒚𝟐 𝒅𝒚𝟑

𝒅𝒘𝟑

𝒅𝒃𝟑
𝒅𝒘𝟐

𝒅𝒃𝟐
𝒅𝒘𝟏

𝒅𝒃𝟏
Loss (𝑳)

𝒅𝒚𝒏 ≜
𝒅𝑳

𝒅𝒚𝒏

BACK PROPAGATION

OPTIMISATION STOCHASTIC GRADIENT DESCENT

• Gradient descent – calculate the gradient of the loss of the entire set with
respect to parameters

• SGD – calculated per sample rather than on the entire batch
• Much quicker to calculate, but can lead to high variance

• Mini-batch SGD – calculate loss gradient on batches of set size
• Best of both worlds

OPTIMISATION: ADAPTIVE METHODS

• Some parameters update much more often than others

• Therefore different learning rates can be appropriate for
different parameters

• Adagrad modifies the learning rate η at each time step for
every parameter based on the past gradients computed for
that parameter

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

𝐺𝑡 + 𝜀
𝑔𝑡

New parameter
Old parameter

Sum of previous gradients

Current gradient

OPTIMISATION: ADAM

• Similar to Adagrad

• Add in information about the mean of the momentum of
previous steps too

• Works very well in most situations

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

𝑣 + 𝜀
𝑚

New parameter
Old parameter

Variance of last n gradients

Mean of last n gradients

BUILDING BLOCK: ADAM OPTIMIZER

import torch.optim as optim

optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()

BUILDING BLOCK – A TRAINING LOOP

Go to notebook

def train(model, iterator, optimizer, criterion, device):

 epoch_loss = 0
 epoch_acc = 0

 model.train()

 for (x, y) in tqdm(iterator, desc="Training", leave=False):

 x = x.to(device)
 y = y.to(device)

 optimizer.zero_grad()

 y_pred, _ = model(x)

 loss = criterion(y_pred, y)

 acc = calculate_accuracy(y_pred, y)

 loss.backward()

 optimizer.step()

 epoch_loss += loss.item()
 epoch_acc += acc.item()

 return epoch_loss / len(iterator), epoch_acc / len(iterator)

CONCEPT CHECKLIST

Deep learning is a qualitatively different
process to classical ML

Deep learning generally requires more data
than classical ML

Deep learning relies on representation
learning

How to write and train a neural network in
PyTorch

24

THANK YOU
mdi-group.github.com

25

DEEP LEARNING 2:
CONVOLUTIONS
Keith Butler

CONVOLUTIONAL NEURAL NETS: THE POWER OF INDUCTIVE BIAS

The inductive bias (also known as learning bias) of a learning algorithm is the
set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110, New
Brunswick, New Jersey, USA: Rutgers University

OVERVIEW

▪ Intro to convolutional neural networks
▪ Building blocks of CNNs
▪ Deep CNNs
▪ Advanced CNNs – Residual blocks

DRAWBACKS OF MLPS

MLPs have no spatial awareness and also suffer from parametric explosions as the input gets larger

EARLY CNNS

LeCun – restricting the number of parameters in a NN leads to better generalisation

STRUCTURE OF A CONVOLUTIONAL LAYER

Typical convolutional layers have three main ingredients:

▪ Kernel

▪ Pooling

▪ Activation

CONVOLUTION IN ACTION: KERNEL

▪ Input + kernel -> activation map

CONVOLUTION IN ACTION: PADDING

▪ Padding around the outside of images
▪ Zero pad: pad with zeros to make torch.nn.ZeroPad2d(padding)
▪ No padding output.shape < input.shape

CONVOLUTION IN ACTION: STRIDING

Controls how the filter slides across the image

GO TO NOTEBOOK

Let’s try building and understanding some filters

CONVOLUTION IN ACTION: POOLING

Pooling compresses information content between layers

3 1

5 1

7 2

0 9

8 2

4 3

4 9

1 1

5 9

8 9

Max Pool (2, 2)

The most commonly used pooling is choosing the maximum value patchwise; max pooling

CONVOLUTION IN ACTION: PUTTING IT TOGETHER

Input image – 1 channel

3 filters

Activation
function

Activations – 3 channels

Max
pooling

Output – 3 channels
reduced dimensions

A DEEP CNN

Conv + ReLU

Max Pool

(224, 224, 64)

(112, 112, 128)

(56, 56, 256)

(28, 28, 512) (14, 14, 1024)

(w, h, c)

VGG-16

Fully connected (dense) layer

BATCH NORMALISATION

Normalise the outputs from intermediate layers

Makes weights deep in the NN more robust to changes early in the NN

Max
pooling

Batch
normalization

BUILDING BLOCKS: CONVOLUTION BLOCK

import torch

import torch.nn as nn

import torch.nn.functional as F

nn.Conv2d(in_channels=1, out_channels=6,kernel_size=5)

F.max_pool2d(x, kernel_size=2)

Hierarchy of filters

▪ Stacking deep networks means that different levels of features are learned
at different depths

Edges

Texture
s

Parts

Advanced CNNs: Residual blocks

▪ A connection that passes the input over a
block of convolutions

▪ Useful in very deep architectures

▪ Allows network to learn to skip blocks

▪ Allows gradient to pass back through the
network more effectively in backprop

CONCEPT CHECKLIST

Origins of convolutional neural
networks

Building blocks of CNNs – kernel,
padding, stride

Max pooling

Deep CNNs

Batch normalisation

Feature detection in different layers

Residual blocks

18

THANK YOU
mdi-group.github.com

19

	Slide 1: Introduction to deep learning
	Slide 2: WHAT WE WILL COVER
	Slide 3: CLASSICAL/DEEP METHODS
	Slide 4: DEEP LEARNING AS REPRESENTATION LEARNING
	Slide 5: DEEP LEARNING AS REPRESENTATION LEARNING
	Slide 6: NEURAL NETWORKS
	Slide 7: NEURAL NETWORKS
	Slide 8: CHANGE OF FUNCTION
	Slide 9: SIGMOID NON-LINEARITY
	Slide 10: DEEP NEURAL NETWORKS: MULTI LAYER PERCEPTRON
	Slide 11: DENSE LAYERS
	Slide 12: ACTIVATION FUNCTION: LINEAR
	Slide 13: ACTIVATION FUNCTION: SIGMOID
	Slide 14: ACTIVATION FUNCTION: TANH
	Slide 15: ACTIVATION FUNCTION: RELU
	Slide 16: ACTIVATION FUNCTION: LEAKYRELU
	Slide 17: WRITING A DNN IN PYTORCH
	Slide 18
	Slide 19: OPTIMISATION STOCHASTIC GRADIENT DESCENT
	Slide 20: OPTIMISATION: ADAPTIVE METHODS
	Slide 21: OPTIMISATION: ADAM
	Slide 22: BUILDING BLOCK: ADAM OPTIMIZER
	Slide 23: BUILDING BLOCK – A TRAINING LOOP
	Slide 24: Concept checklist
	Slide 25: THANK YOU
	Slide 26: Elements

