

INTRODUCTION TO DEEP LEARNING

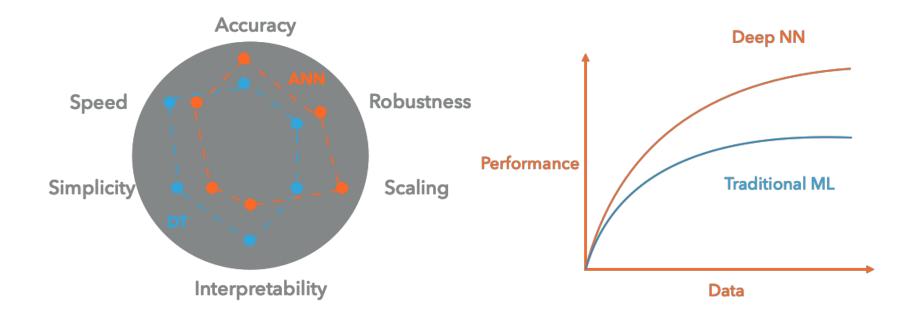
Keith Butler

WHAT WE WILL COVER

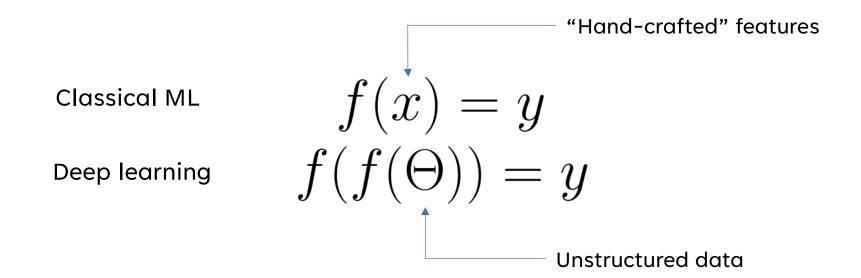
- The difference between deep and classical learning
- The concept of representation learning
- The structure of a simple multi-layer perceptron
- How to write an MLP in PyTorch
- How a NN learns optimisation and backpropagation
- The power of inductive bias
- The structure of a simple convolutional neural network

CLASSICAL/DEEP METHODS

- Classical: linear regression, trees etc..
- Deep: neural network type models

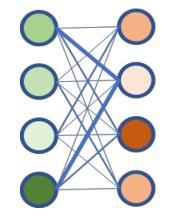


DEEP LEARNING AS REPRESENTATION LEARNING



DEEP LEARNING AS REPRESENTATION LEARNING

Deep learning



Classical ML	
Number of eyes	2
Whiskers	Ν
Legs	Ν
Scales	Y

Classification model

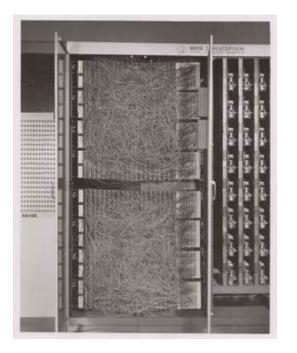
f(x) = y

Cat/Snake

NEURAL NETWORKS

Originally an analogue device intended for binary classification

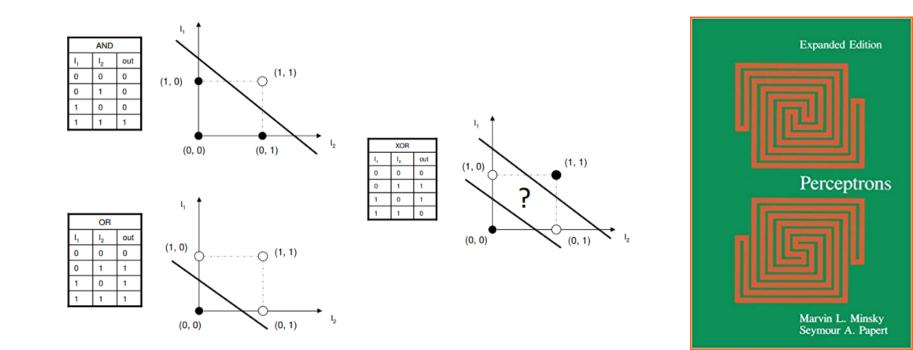
$$y = \phi(\sum_{i} w_{i}x_{i} + b) = \phi(\mathbf{w}^{T}\mathbf{x} + b)$$



Produces a single output from a matrix of inputs, weights and biases

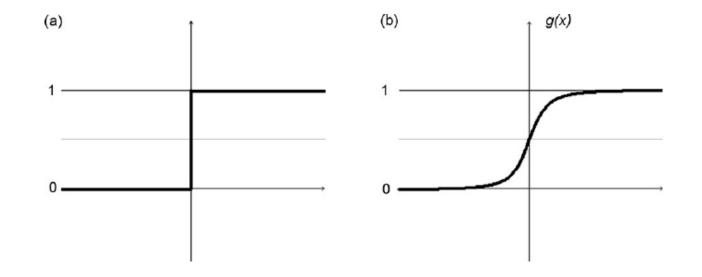
NEURAL NETWORKS

Minsky and Papert showed they could not solve non-linear classification



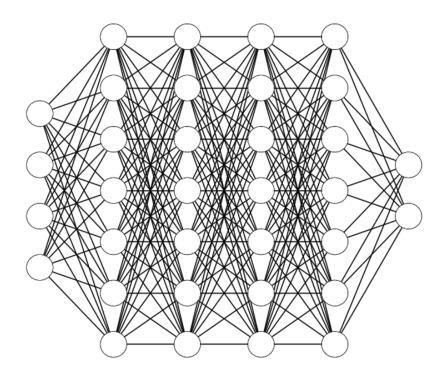
CHANGE OF FUNCTION

$$y = \phi(\sum_{i} w_{i}x_{i} + b) = \phi(\mathbf{w}^{T}\mathbf{x} + b)$$

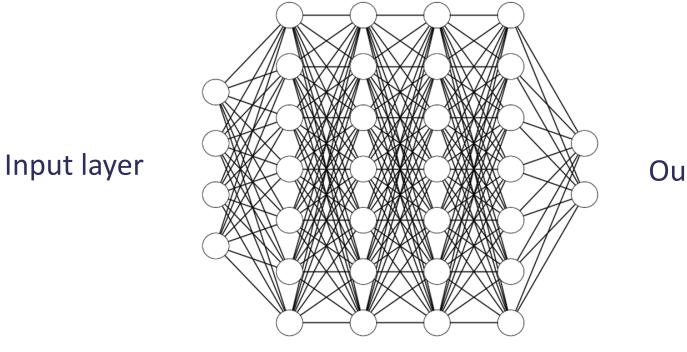


SIGMOID NON-LINEARITY

A differentiable non-linearity allows for multiple layers



DEEP NEURAL NETWORKS: MULTI LAYER PERCEPTRON

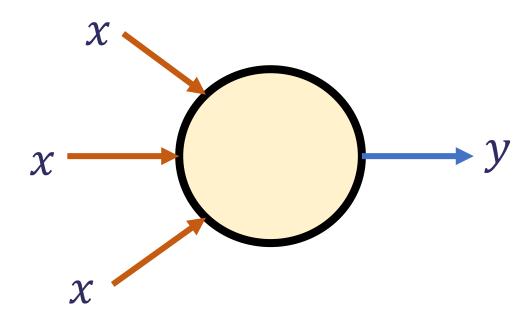


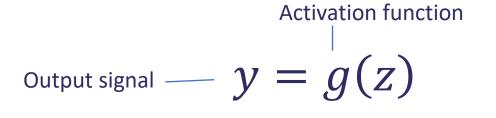
Output layer

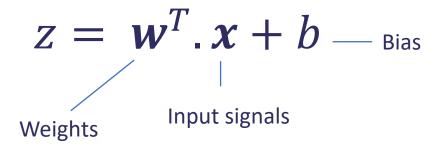
Hidden layers

DENSE LAYERS

Also called fully connected layers as each node is connected to each node in the previous layer

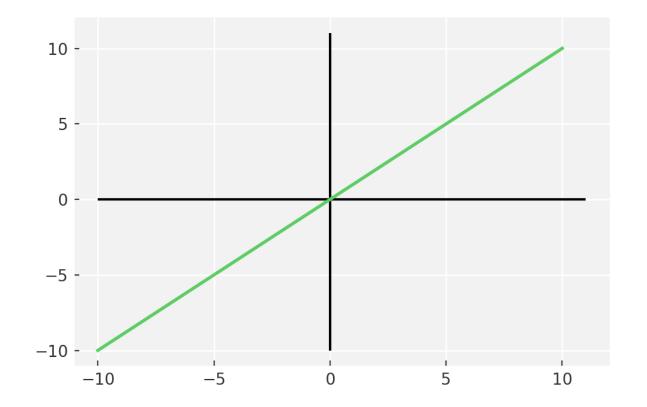






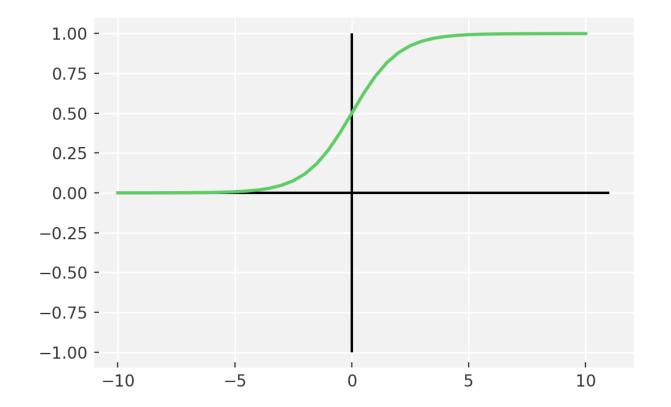
ACTIVATION FUNCTION: LINEAR

The simplest activation is a linear transformation of the weights matrix



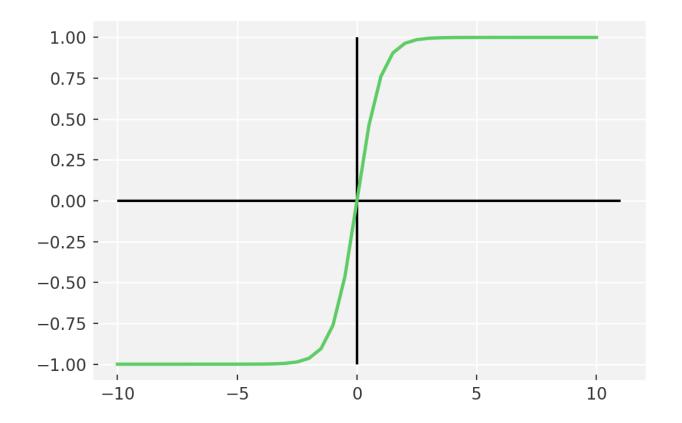
ACTIVATION FUNCTION: SIGMOID

As we saw earlier sigmoid was the first non-linearity (after the step function)



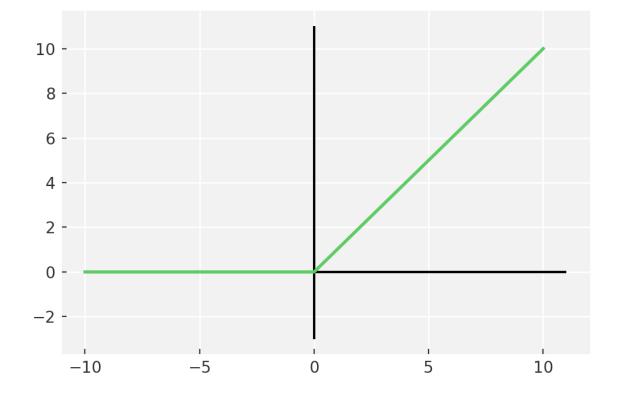
ACTIVATION FUNCTION: TANH

Like sigmoid, but zero-centered, **converges better** than sigmoid



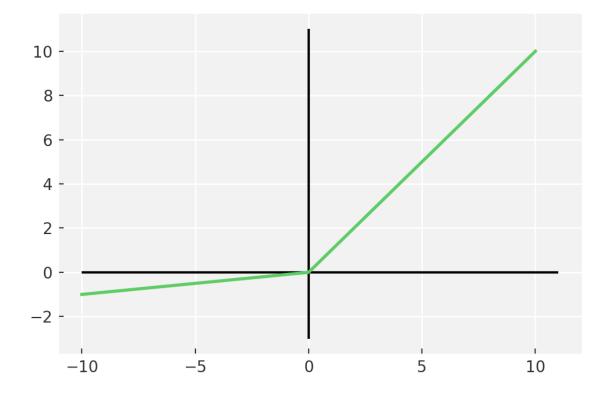
ACTIVATION FUNCTION: RELU

The rectified linear unit (ReLU) has 6 x improvement in convergence from Tanh function



ACTIVATION FUNCTION: LEAKYRELU

ReLU can still lead to vanisihing gradients, leaky ReLU attempts to circumvent this



WRITING A DNN IN PYTORCH

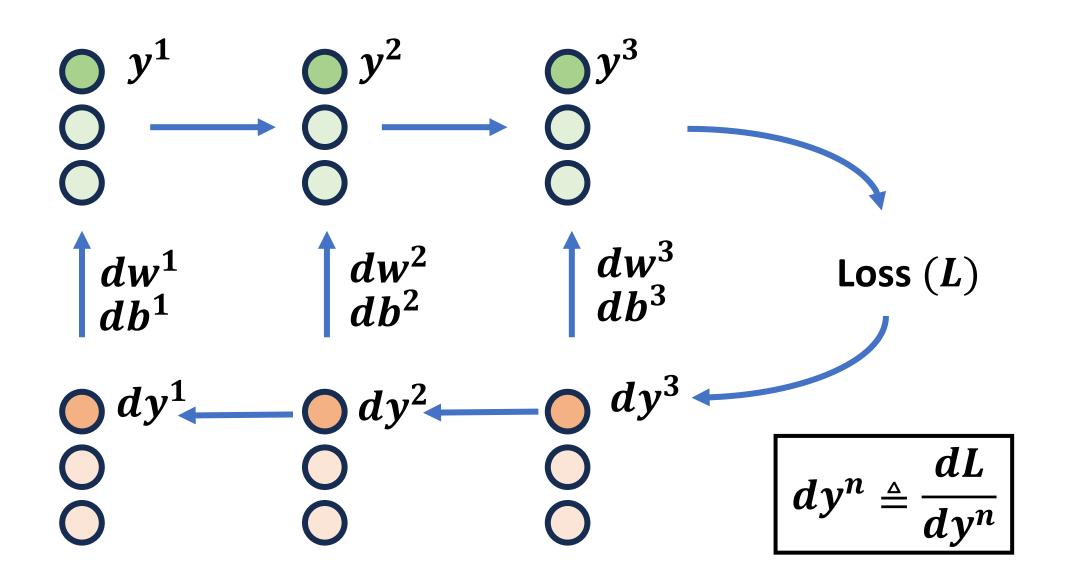
```
class MLP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.input_fc = nn.Linear(input_dim, 250)
        self.hidden_fc = nn.Linear(250, 100)
        self.output_fc = nn.Linear(100, output_dim)
    def forward(self, x):
```

```
batch_size = x.shape[0]
x = x.view(batch_size, -1)
h_1 = F.relu(self.input_fc(x))
h_2 = F.relu(self.hidden_fc(h_1))
y_pred = self.output_fc(h_2)
```

return y pred, h 2

Go to notebook

BACK PROPAGATION

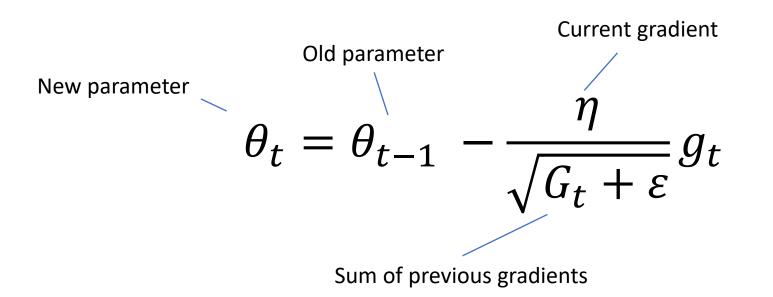


OPTIMISATION STOCHASTIC GRADIENT DESCENT

- Gradient descent calculate the gradient of the loss of the entire set with respect to parameters
- SGD calculated per sample rather than on the entire batch
 - Much quicker to calculate, but can lead to high variance
- Mini-batch SGD calculate loss gradient on batches of set size
 - Best of both worlds

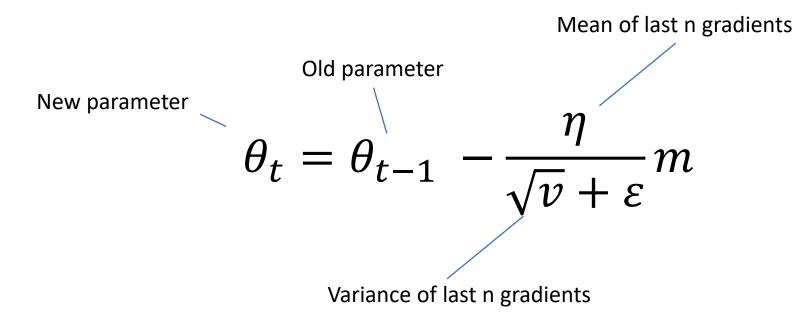
OPTIMISATION: ADAPTIVE METHODS

- Some parameters update much more often than others
- Therefore different learning rates can be appropriate for different parameters
- Adagrad modifies the learning rate η at each time step for every parameter based on the past gradients computed for that parameter



OPTIMISATION: ADAM

- Similar to Adagrad
- Add in information about the mean of the momentum of previous steps too
- Works very well in most situations



BUILDING BLOCK: ADAM OPTIMIZER

```
import torch.optim as optim
```

```
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
```

BUILDING BLOCK – A TRAINING LOOP

def train(model, iterator, optimizer, criterion, device):

```
epoch loss = 0
epoch acc = 0
model.train()
for (x, y) in tqdm(iterator, desc="Training", leave=False):
   x = x.to(device)
   y = y.to(device)
   optimizer.zero grad()
                                                                    Go to notebook
   y \text{ pred}, = \text{model}(x)
   loss = criterion(y pred, y)
    acc = calculate accuracy(y pred, y)
    loss.backward()
   optimizer.step()
    epoch loss += loss.item()
    epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
```

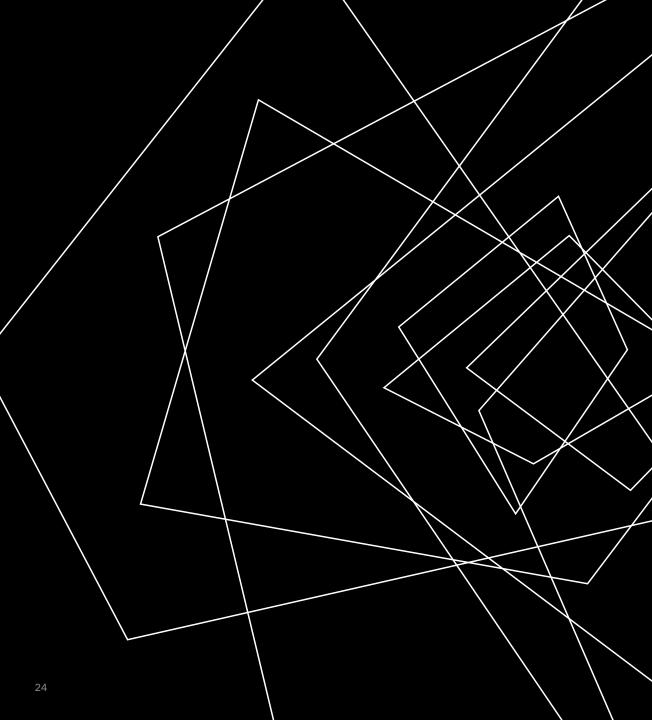
CONCEPT CHECKLIST

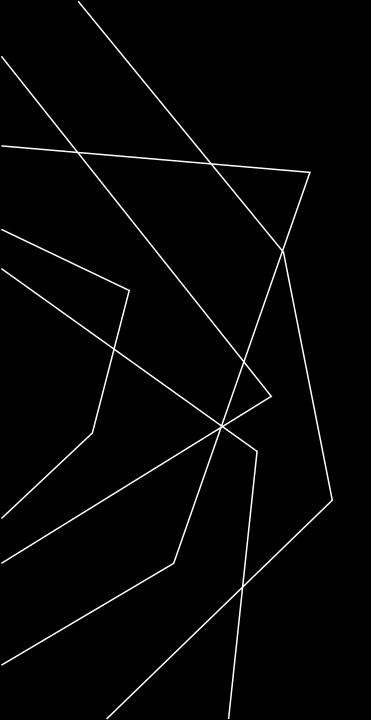
Deep learning is a qualitatively different process to classical ML

Deep learning generally requires more data than classical ML

Deep learning relies on representation learning

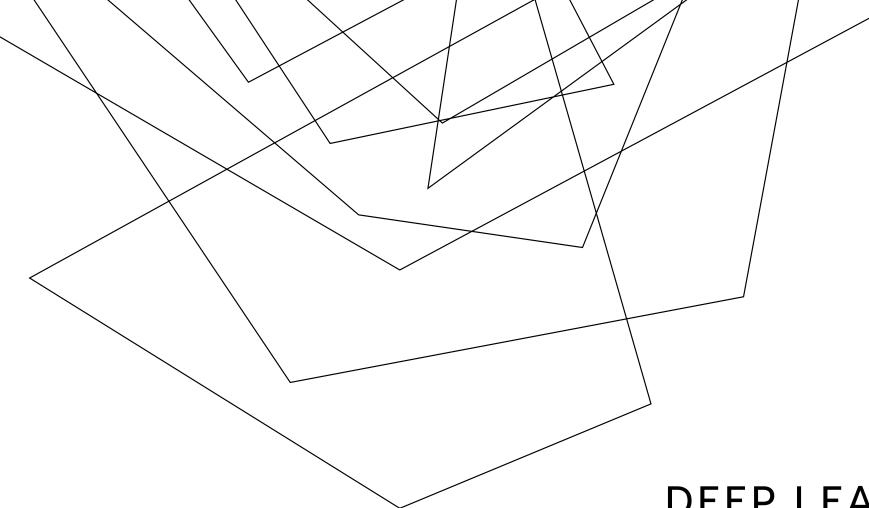
How to write and train a neural network in PyTorch





THANK YOU

mdi-group.github.com



DEEP LEARNING 2: CONVOLUTIONS

Keith Butler

CONVOLUTIONAL NEURAL NETS: THE POWER OF INDUCTIVE BIAS

The Need for Biases in Learning Generalizations

Tom M. Mitchell

The **inductive bias** (also known as **learning bias**) of a learning algorithm is the set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered.

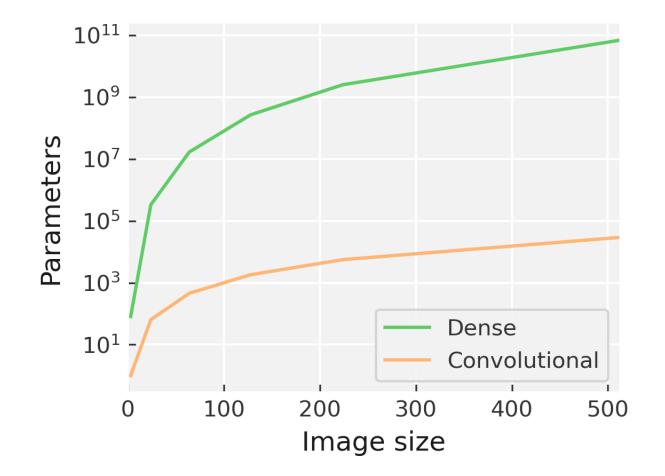
The need for biases in learning generalizations, CBM-TR 5-110, New Brunswick, New Jersey, USA: Rutgers University

OVERVIEW

- Intro to convolutional neural networks
- Building blocks of CNNs
- Deep CNNs
- Advanced CNNs Residual blocks

DRAWBACKS OF MLPS

MLPs have **no spatial awareness** and also suffer from **parametric explosions** as the input gets larger



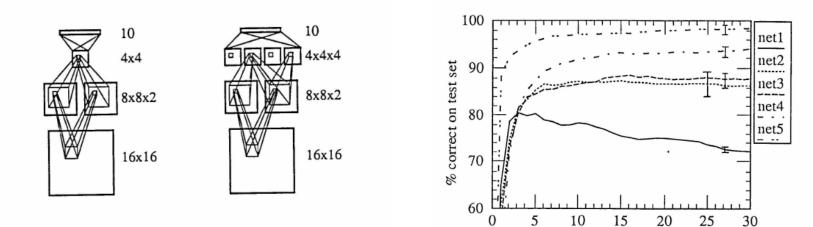
EARLY CNNS

LeCun – restricting the number of parameters in a NN leads to better generalisation

Generalization and Network Design Strategies

Y. le Cun Department of Computer Science University of Toronto

Technical Report CRG-TR-89-4 June 1989



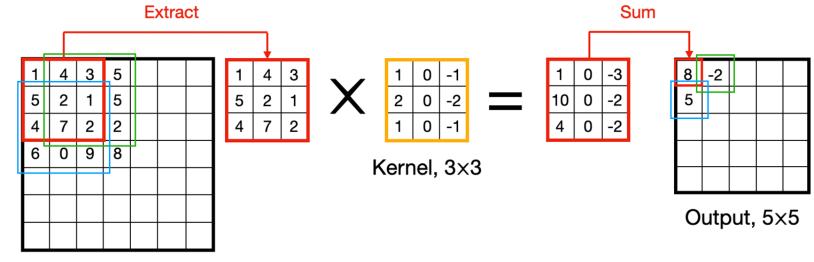
training epochs

Figure 5 two network architectures with shared weights: Net-4 and Net-5

STRUCTURE OF A CONVOLUTIONAL LAYER

Typical convolutional layers have three main ingredients:

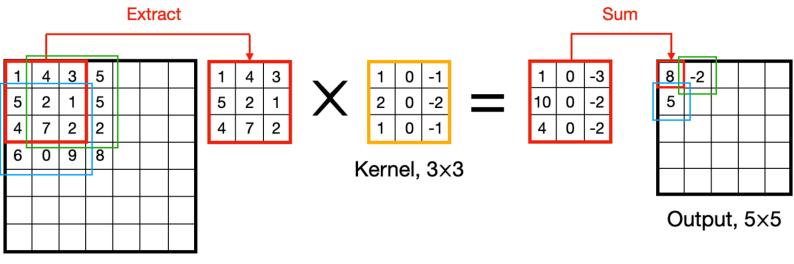
- Kernel
- Pooling
- Activation



Input, 7×7

CONVOLUTION IN ACTION: KERNEL

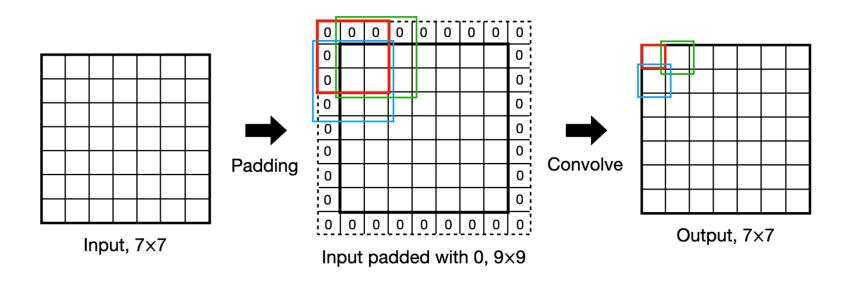
Input + kernel -> activation map



Input, 7×7

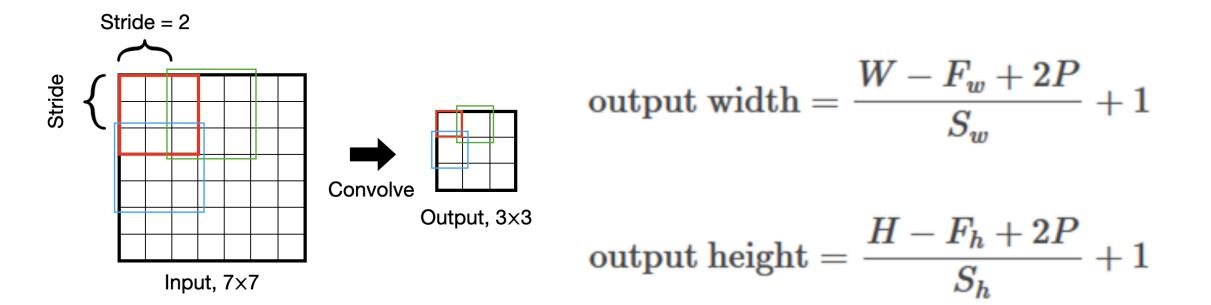
CONVOLUTION IN ACTION: PADDING

- Padding around the outside of images
 - Zero pad: pad with zeros to make torch.nn.ZeroPad2d (padding)
 - No padding output.shape < input.shape</pre>



CONVOLUTION IN ACTION: STRIDING

Controls how the filter slides across the image



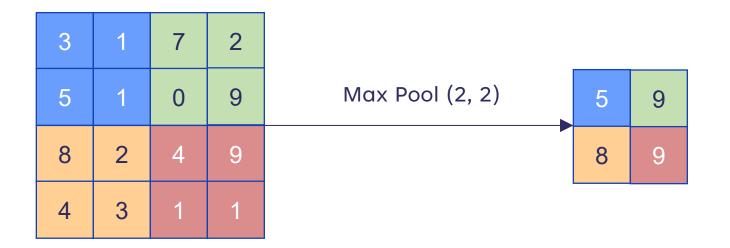
GO TO NOTEBOOK

Let's try building and understanding some filters

```
nx = input_image.shape[0]
ny = input_image.shape[1]
nchannel = input_image.shape[2]
if padding > 0:
k = kernel.shape[0]
for ix_out in np.arange(nx_out):
    for iy_out in np.arange(ny_out):
```

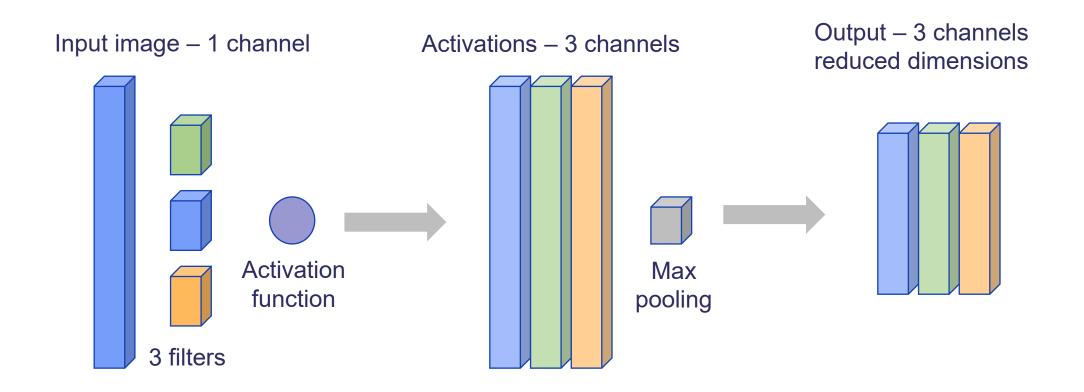
CONVOLUTION IN ACTION: POOLING

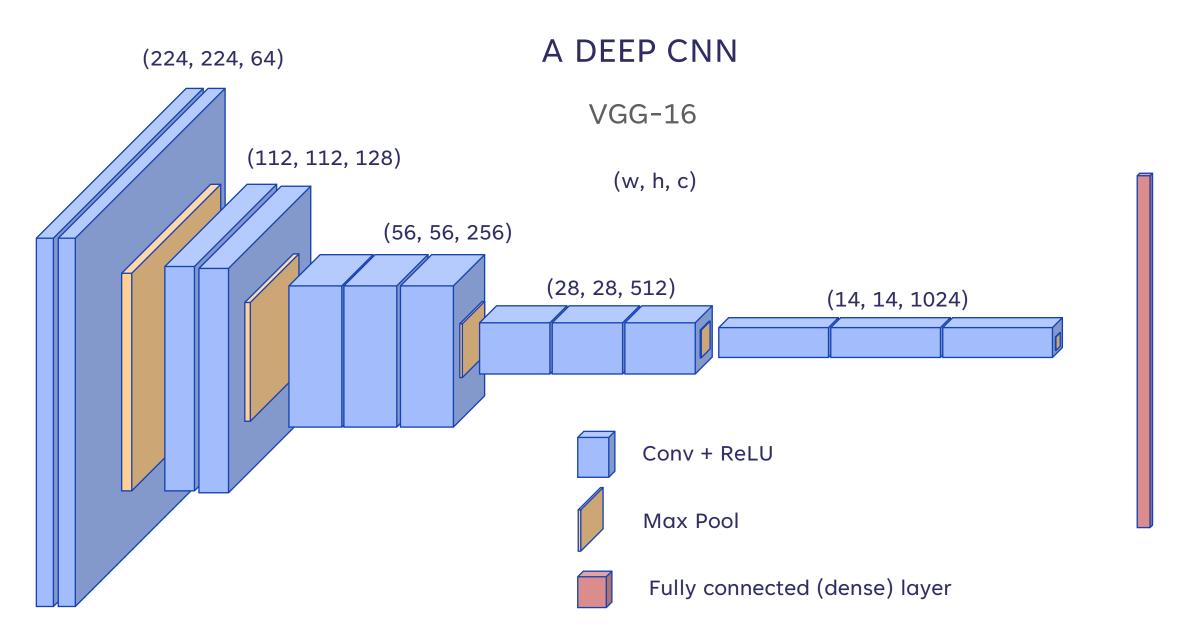
Pooling compresses information content between layers



The most commonly used pooling is choosing the maximum value patchwise; max pooling

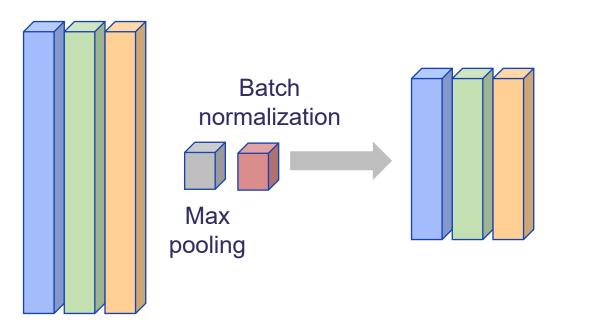
CONVOLUTION IN ACTION: PUTTING IT TOGETHER





BATCH NORMALISATION

Normalise the outputs from intermediate layers



Makes weights deep in the NN more robust to changes early in the NN

BUILDING BLOCKS: CONVOLUTION BLOCK

import <mark>torch</mark>

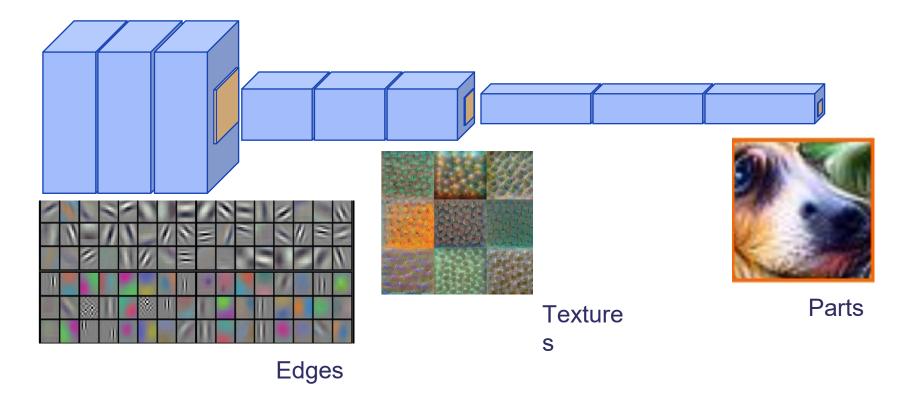
- import torch.nn as nn
- import torch.nn.functional as F

nn.Conv2d(in_channels=1, out_channels=6,kernel_size=5)

```
F.max_pool2d(x, kernel_size=2)
```

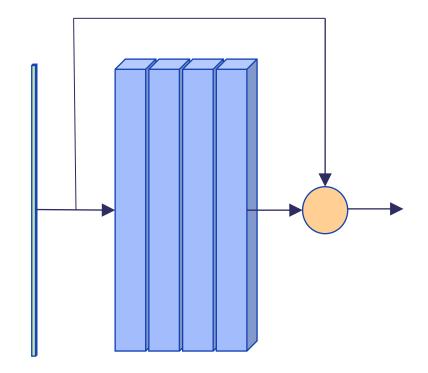
Hierarchy of filters

 Stacking deep networks means that different levels of features are learned at different depths



Advanced CNNs: Residual blocks

- A connection that passes the input over a block of convolutions
- Useful in very deep architectures
- Allows network to learn to skip blocks
- Allows gradient to pass back through the network more effectively in backprop



CONCEPT CHECKLIST

Origins of convolutional neural networks

Building blocks of CNNs – kernel, padding, stride

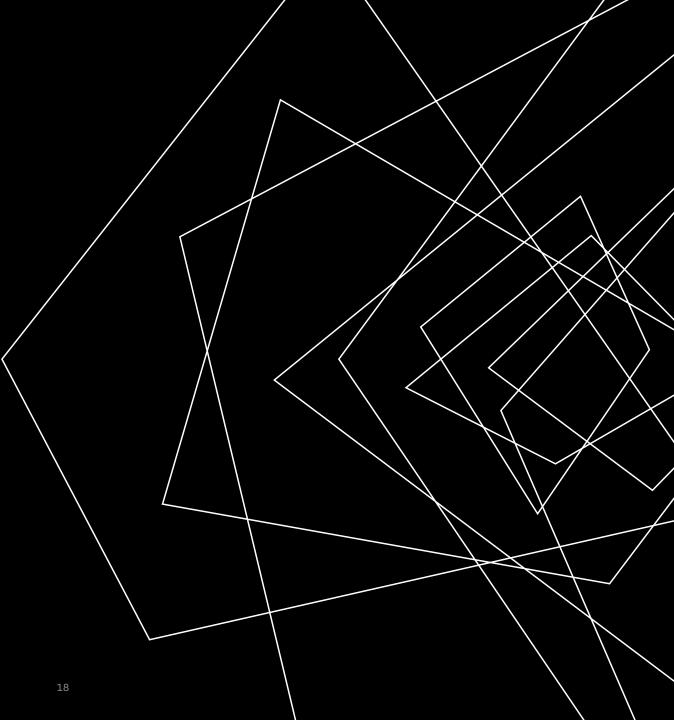
Max pooling

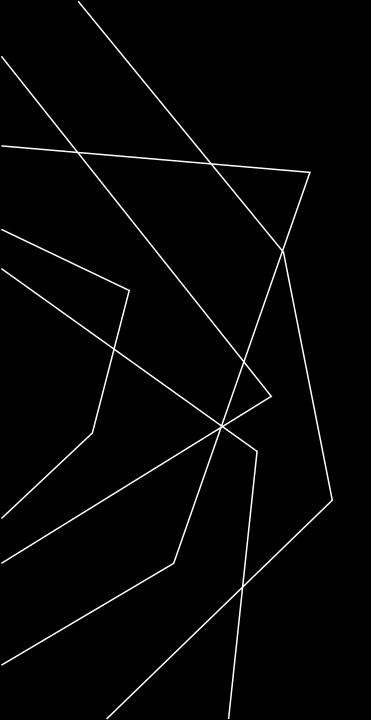
Deep CNNs

Batch normalisation

Feature detection in different layers

Residual blocks





THANK YOU

mdi-group.github.com