Supplemental Material for Exchange-Correlation Functional Challenges in Modeling Quaternary Chalcogenides

Robert B. Wexler⁺, Gopalakrishnan Sai Gautam⁺, and Emily A. Carter⁺[‡]

⁺Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263, United States and [‡] Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States

Figure S1. Planewave basis set convergence tests for SCAN calculations of Cu_2ZnSnS_4 . A 500 eV kinetic energy cutoff is sufficient to obtain 2 meV/atom (dotted orange line) convergence of the total energy.

Number of **k**-points along \vec{a} and \vec{b}

Figure S2. **k**-point convergence tests for SCAN calculations of Cu₂ZnSnS₄. The relative energy is interpolated between data points (orange circles) using a cubic spline. A $6 \times 6 \times 3$, Γ -point-centered **k**-point grid, which corresponds to the 8 k-points per 4 Å mentioned in the main text, is sufficient to obtain <0.5 meV/atom convergence of the total energy.

Figure S3. Defect configurations for Cu_2ZnXS_4 where X is either Sn or Ge. Blue, gray, green, and yellow balls correspond to Cu, Zn, X (Sn/Ge), and S, respectively. Arrows point to the locations of individual defects. Atoms in the top and bottom layers are the same. Defect configurations are taken from Ref. 1 and our unpublished work. Placement of these defects is decided by generating all unique defect configurations, calculating their SCAN total energies, and finding the minimum energy structure.

Figure S4. Crystal structures of stannite and wurtzite Cu₂ZnXS₄ where X is either Sn or Ge. Blue, gray, green, and yellow balls correspond to Cu, Zn, X (Sn/Ge), and S, respectively.

Figure S5. XC functional dependence of qualitative defect formation energy (ΔE_f^d) trends in (a) Cu₂ZnSnS₄ and (b) Cu₂ZnGeS₄. The vertical axis corresponds to the ΔE_f^d relative to that of Cu_{2n}+Zn_{Cu}, i.e., the defect with the best agreement between XC functionals. Error bars indicate that the formation energies are converged to within 0.1 eV (see Table S6), which is within usual convergence bounds employed for defect calculations in periodic boundary conditions.^{2–4} The intersection of two dashed lines indicates a qualitative disagreement between XC functionals in the stability order of defects. (a) and (b) show generally strong agreement between XC functionals with the following exceptions. For both Cu₂ZnSnS₄ and Cu₂ZnGeS₄, Cu_{Sn/Ge} (dashed green line) and 2Cu_{2n}+Sn/Ge_{2n} (cyan) intersect, leading to a significant change in their relative stability order where we define a significant intersection/change as one in which the ΔE_f^d , in their pre- and post-intersection stability order, differ by more than 0.1 eV. For Cu₂ZnSnS₄, V_{Zn} (gray) and 2Cu_{2n}+Sn_{Zn} (cyan) intersect significantly. For Cu₂ZnGeS₄, (1) Zn_{Ge} (purple) intersects with 2Cu_{2n}+Ge_{2n} (cyan) and 2Cu_{2n}+Ge_{2n} (brown), and (3) Cu_{Ge}+Ge_{Cu} (red) intersects with V_{Ge} (yellow).

Figure S6. DFT-PBE band structure of CZTS, which has a direct band gap of 0.21 eV at the Γ -point. The high-symmetry *k*-path was generated using the approach discussed in Ref. 5. Band structures were plotted using pymatgen.⁶

Figure S7. DFT-SCAN band structure of CZTS, which has a direct band gap of 0.02 eV at the Γ -point.

Figure S8. DFT-PBE band structure of CZGS, which has a direct band gap of 0.71 eV at the Γ -point.

Figure S9. DFT-SCAN band structure of CZGS, which has a direct band gap of 0.39 eV at the Γ -point.

Table S1. Effect of Ge semicore 3d states on SCAN 0 K formation energies (ΔE_f^{0K}) of Ge-containing compounds. Without 3d and With 3d correspond to relaxations (where ionic positions, cell volume, and cell shape are allowed to change) using the 4s² 4p² and 4s² 3d¹⁰ 4p² PAW data sets for Ge, respectively. The inclusion of semicore 3d states in the PAW data set for Ge only marginally affects the ΔE_f^{0K} of compounds containing Cu, Ge, S, Sn, and Zn.

	ΔE_f^{0K} (eV	With 3d –	
Compound	Without 3d	With 3d	Without 3d (meV/atom)
Cu₃Ge	-0.05	-0.05	-3.90
GeS	-0.25	-0.25	1.38
GeS ₂	-0.36	-0.37	-4.01
Cu_2GeS_3	-0.39	-0.39	-0.44
Cu ₄ GeS ₄	-0.31	-0.31	-0.03
Cu ₈ GeS ₆	-0.23	-0.23	-1.85
SnGeS₃	-0.40	-0.40	-2.96
Cu ₂ ZnGeS ₄	-0.54	-0.54	-0.31

Table S2. Effect of Cu semicore 3p states on ΔE_f^{0K} of Cu-containing compounds, the SCAN 0 K kesterite to stannite reaction energy (ΔE_{rxn}^{0K}) for Cu₂ZnSnS₄, and SCAN 0 K Cu chemical potentials (μ_{Cu}) for the Cu-poor and constrained Cu-poor conditions. The μ_{Cu} are referenced to the SCAN energy of pure Cu in its ground-state structure at 0 K, i.e., $Fm\overline{3}m$ (225). Without 3p and With 3p correspond to relaxations (where ionic positions, cell volume, and cell shape are allowed to change) using the 4s¹ 5d¹⁰ and 3p⁶ 4s¹ 5d¹⁰ PAW data sets for Cu, respectively. The inclusion of semicore 3p states in the PAW data set for Cu only marginally affects the ΔE_f^{0K} of compounds containing Cu (i.e., Cu₂S, Cu₇S₄, CuS, CuS₂, and both kesterite and stannite Cu₂ZnSnS₄), ΔE_{rxn}^{0K} , or μ_{Cu} for the Cu-poor and constrained Cu-poor conditions.

	ΔE_{f}^{0K} (eV	With 3p –	
Compound	Without 3p	With 3p	Without 3p (meV/atom)
Cu ₂ S	-0.19	-0.18	15.44
Cu ₇ S ₄	-0.23	-0.21	12.08
CuS	-0.27	-0.27	9.03
CuS ₂	-0.17	-0.17	6.39
Cu2ZnSnS4 (kesterite)	-0.54	-0.53	6.17
Cu ₂ ZnSnS ₄ (stannite)	-0.53	-0.53	5.89

	ΔE_{rxn}^{0K} (eV/fo	With 3p –	
Reaction	Without 3p With 3p		<i>Without</i> 3p (meV/atom)
Kesterite → Stannite	0.06	0.05	-0.28
Chomical potential	μ_{Cu} (eV/	With 3p –	
condition	Without 3p	With 3p	Without 3p (meV/atom)
Cu-poor	-0.57	-0.54	24.69
Constrained Cu-poor	-0.38	-0.35	24.69

Table S3. SCAN ΔE_f^{0K} and experimental 298 K formation enthalpies (ΔH_f^{298K}). Space groups are given by their international short symbol and number (in parentheses). All structures are optimized at the level of DFT-SCAN. Incorrect phase assignments are highlighted in yellow. [†]SCAN+rVV10 corrects phase assignment but not the magnitude of ΔE_f^{0K} . [‡]Correct phase, i.e., C2/c (15), is 4 meV/atom higher in energy. We select the ΔH_f^{Exp} of Figure 2 in the main text from those of Refs. 7–13. Ref. 7 is used by the Materials Project¹⁴ and, therefore, is our preferred source of experimental thermochemical data. We apply the following rules in order to select the ΔH_f^{Exp} : (1) if a compound has one ΔH_f^{298K} , then set its $\Delta H_f^{Exp} = \Delta H_f^{298K}$; (2) if a compound has two ΔH_f^{298K} , then set its $\Delta H_f^{Exp} = \Delta H_f^{298K}$ [Ref. min(*n*)] where *n* is the Ref. number (e.g., for Gel₂, since *n* = {4, 5}, min(*n*) = 4 and $\Delta H_f^{Exp} = \Delta H_f^{298K}$ [Ref. 4]); (3) if a compound has three or more ΔH_f^{298K} , then set its ΔH_f^{Exp} equal to the mode of $\{\Delta H_f^{298K}\}$ (i.e., the ΔH_f^{298K} that appears most often); and (4) if $\{\Delta H_f^{298K}\}$ has two or more modes, then set its $\Delta H_f^{Exp} = \Delta H_f^{298K}$ [Ref. min(*n*)].

Compound	Space group ¹⁵	ΔE_f^{0K}	$\Delta H_f^{298K} \text{ (eV/atom)}$					
compound	Space group	(eV/atom)	Ref. 7	Ref. 8	Ref. 9	Ref. 10	Ref. 11	Other
Cu₃Ge	<i>Pmmn</i> (59)	-0.05						-0.0412
GeS	Pnma (62)	-0.25	-0.39	-0.39	-0.36	-0.32	-0.39	
GeS ₂	P2 ₁ /c (14)†	-0.37	-0.54	-0.54	-0.65	-0.42		
Ge_3N_4	P31c (159)	-0.18	-0.10		-0.09	-0.59		
GeF ₂	P2 ₁ 2 ₁ 2 ₁ (19)	-2.18	-2.27			-2.27		
GeO ₂	P4 ₂ /mnm (136)	-1.87	-2.00	-2.00	-1.90	-2.00	0.15	
GeP	C2/m (12)	-0.01	-0.14	-0.11	-0.11	-0.11		
Cu_2GeS_3	<i>Cc</i> (9)	-0.39						
Cu_4GeS_4	$P2_{1}/c$ (14)	-0.31						
Cu ₈ GeS ₆	<i>Pmn</i> 2 ₁ (31)	-0.23						
SnGeS₃	$P2_{1}/c$ (14)	-0.40						
Cu_2ZnGeS_4	<i>I</i> 4 (82)	-0.54						
Gel ₂	P3m1 (164)	-0.31			-0.30	-0.27		
Gel ₄	Pa3 (205)	-0.27	-0.08		-0.29	-0.31		
GeSe	Pnma (62)	-0.19	-0.36	-0.36	-0.48	-0.36	-0.36	
GeSe ₂	$P2_{1}/c$ (14)	-0.28	-0.39	-0.39		-0.39	-0.39	
GeTe	R3m (160)	-0.04	-0.17	-0.25	-0.13	-0.25	-0.25	
Mg ₂ Ge	Fm $\overline{3}m$ (225)	-0.30	-0.40	-0.36	-0.38			
MgGeO₃	R3 (148)‡	-2.41				-2.52		
Ni₂Ge	Pnma (62)	-0.32	-0.38	-0.38				
SnS	Pnma (62)	-0.45	-0.37	-0.45	-0.34	-0.22	-0.22	
SnS ₂	P3m1 (164)	-0.42	-0.53	-0.62		-0.32	-0.32	
Cu ₂ S	P2 ₁ /c (14)	-0.19	-0.27	-0.28	-0.27	-0.27		
CuS	P6 ₃ /mmc (194)	-0.27	-0.27	-0.28	-0.28	-0.29		
Cu_2SnS_3	<i>C</i> 1 <i>c</i> 1 (9)	-0.39						

Compound	Space group	ΔE_f^{0K}		ΔH_f^{298K} (eV/atom)				
Compound		(eV/atom)	Ref. 7	Ref. 8	Ref. 9	Ref. 10	Ref. 11	Other
Cu ₄ SnS ₄	Pnma (62)	-0.30						
Cu_7S_4	Pnma (62)	-0.23						-0.07 ¹³
CuS₂	Pā3 (205)	-0.17						
Sn_2S_3	Pnma (62)	-0.43	-0.55	-0.55		-0.55	-0.55	
Cu ₂ ZnSnS ₄	<i>I</i> 4 (82)	-0.54						
ZnS	$Far{4}3m$ (216)	-0.94	-1.06	-1.06	-1.07	-1.05		

Table S4. Polymorph preference in Cu_2ZnSnS_4 and Cu_2ZnGeS_4 does not depend on the XC functional.

ХС	$E_{stannite} - E_{kesterite}$ (eV/form	$E_{wurtzite} - E_{kesterite}$ ula unit)
	Cu2ZnSnS4	
PBE	0.02	0.06
PBE+U	0.03	0.05
SCAN	0.03	0.07
SCAN+rVV10	0.03	0.07
SCAN+(U-2)	0.03	0.06
	Cu ₂ ZnGeS ₄	
PBE	0.04	0.04
PBE+U	0.05	0.04
SCAN	0.04	0.05
SCAN+rVV10	0.04	0.05
SCAN+ $(U-2)$	0.05	0.05

Table S5. SCAN+rVV10 does not affect strongly the formation energies of defects with varying numbers of holes generated. For $Cu_{Zn}+Zn_{Cu}$ and V_{Sn} in CZTS and $Cu_{Zn}+Zn_{Cu}$ in CZGS, the difference between the SCAN and SCAN+rVV10 defect formation energies is within the error associated with using a 2 × 2 × 2 supercell (Table S4) and, therefore, cannot be viewed as a significant deviation between the two methods. For V_{Ge} , the difference is 0.15 eV, which is significant but does not affect any qualitative trends.

Compound	Defect	Number of boles generated	Defect formation energy (eV)		
	Delect	Number of noies generated	SCAN	SCAN+rVV10	
CZTS	$Cu_{Zn}+Zn_{Cu}$	0	0.22	0.20	
CZTS	Vsn	4	2.07	2.05	
CZGS	Cu _{Zn} +Zn _{Cu}	0	0.15	0.25	
CZGS	V_{Ge}	4	1.97	2.12	

Table S6. Convergence of the SCAN $2Cu_{Zn}+Sn_{Zn}+V_{Cu}$ formation energy with respect to supercell size. *n* corresponds to the number of periodic repeats along the *a*, *b*, and *c* crystallographic axes. A $2 \times 2 \times 2$ supercell is sufficient to obtain 0.1 eV convergence of the $2Cu_{Zn}+Sn_{Zn}+V_{Cu}$ formation energy. We analyze the effect of supercell size on the formation energy for $2Cu_{Zn}+Sn_{Zn}+V_{Cu}$ as it is the largest defect cluster we consider and is charge imbalanced, both of which increase the likelihood of interactions between periodic images.

n _a	n_b	n _c	Relative energy (eV)
2	2	2	-0.05
3	2	2	-0.01
3	3	2	0.09
3	3	3	0.00

Table S7. XC functional dependence of unreferenced (i.e., not referenced to the energies of pure elements in their ground-state structures) chemical potentials ($\mu^{unref.}$) under Cu-poor conditions for CZTS and CZGS. The Cu-poor conditions are defined in the main text. Note that here we have subtracted 0.27 eV/Ge from SCAN+(U - 2) and SCAN+ $U \mu_{Ge}$ in accordance with the Ge correction described in the main text.

VC	$\mu^{unref.}$ (eV/atom)							
λί –	Cu	Zn	Sn/Ge	S				
CZTS								
PBE	-4.64	-3.06	-5.50	-4.21				
PBE+U	-3.49	-2.77	-6.09	-4.21				
SCAN	-15.69	-15.36	-37.16	-9.64				
SCAN+rVV10	-15.48	-15.12	-36.95	-9.54				
SCAN+(U-2)	-15.15	-15.19	-37.49	-9.64				
SCAN+U	-14.55	-15.10	-37.82	-9.64				
HSE	-4.37	-3.16	-5.84	-5.23				
CZGS								
PBE	-4.76	-3.06	-5.81	-4.21				
PBE+U	-3.65	-2.77	-6.38	-4.21				
SCAN	-15.79	-15.36	-20.43	-9.64				
SCAN+(U-2)	-15.28	-15.19	-20.75	-9.64				
HSE	-4.16	-2.74	-4.99	-5.65				

Sample SCAN calculation of the Cu-poor condition for CZGS

In the Cu-poor condition, Cu₂ZnGeS₄ is in equilibrium with GeS₂, S, and ZnS. To determine the μ of Cu, Zn, S, and Ge for this condition, we solve the following set of equations

$$2\mu_{Cu} + \mu_{Zn} + \mu_{Ge} + 4\mu_S = E_{Cu_2ZnGeS_4}^{SCAN} - 0.27$$
(S1)

$$\mu_{Ge} + 2\mu_{S} = E_{GeS_{2}}^{SCAN} - 0.27$$
(S2)
$$\mu_{S} = E_{S}^{SCAN}$$
(S3)

$$\mu_S = E_S^{SCAN} \tag{S3}$$

$$\mu_{Zn} + \mu_S = E_{ZnS}^{SCAN} \tag{S4}$$

or the matrix equation

$$\begin{bmatrix} 2 & 1 & 1 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_{Cu} \\ \mu_{Zn} \\ \mu_{Ge} \\ \mu_{S} \end{bmatrix} = \begin{bmatrix} E_{Cu_{2}ZnGeS_{4}}^{SCAN} - 0.27 \\ E_{GeS_{2}}^{SCAN} - 0.27 \\ E_{S}^{SCAN} \\ E_{S}^{SCAN} \\ E_{ZnS}^{SCAN} \end{bmatrix}$$
(S5)

where the E^{SCAN} is the SCAN total energy in eV/formula unit and the 0.27 eV/Ge subtracted from $E_{Cu_2ZnGeS_4}^{SCAN}$ and $E_{GeS_2}^{SCAN}$ is the Ge correction from the main text. The solution to Equation S5 is highlighted green in Table S7.

Table S8. Theoretical vs. experimental lattice constants of compounds containing Ge or in equilibrium with Cu_2ZnSnS_4 and Cu_2ZnGeS_4 under Cu-poor or constrained Cu-poor synthesis conditions (i.e., S, SnS, SnS₂, and ZnS) calculated using different XC functionals. There is only one set of theoretical values (SCAN) for Cu_3Ge , GeS, GeS₂, Cu_2GeS_3 , Cu_4GeS_4 , Cu_8GeS_6 , and SnGeS₃ because these compounds are unstable under Cu-poor conditions and, therefore, were not included in the PBE, PBE+U, SCAN+(U - 2), and SCAN+U convex hull constructions.

	Lattice constants	F arma				SCAN	
Compound	Å for <i>a, b,</i> and <i>c</i>	Exp Pof 15	PBE	PBE+U	SCAN	(II - 2)	SCAN+U
	deg for $lpha$, eta , and γ	Rel. 15				$(0 - \mathbf{Z})$	
	а	4.19			4.17		
	b	4.53			4.46		
Cu3Ge	С	5.25			5.24		
	$\alpha = \beta = \gamma$	90.00			90.00		
	а	3.65			3.61		
Gos	b	4.31			4.48		
Ges	С	10.45			10.67		
	$\alpha = \beta = \gamma$	90.00			90.00		
	а	6.67			6.76		
	b	11.46			11.80		
GeS ₂	С	16.12			16.20		
	$\alpha = \beta$	90.00			90.00		
	γ	90.00			90.72		
	а	6.42			6.44		
	b	6.44			6.40		
CueCoSe	С	6.50			6.44		
Cu ₂ Ges ₃	α	60.33			60.24		
	β	81.04			80.65		
	γ	71.65			70.89		
	а	9.80			9.71		
	b	9.96			9.93		
Cu_4GeS_4	С	13.22			13.09		
	$\alpha = \beta$	90.00			90.00		
	γ	100.97			100.84		
	а	6.96			6.90		
CueGoSc	b	7.04			7.00		
Cu ₈ GeS ₆	С	9.86			9.68		
	$\alpha = \beta = \gamma$	90.00			90.00		
	a	7.27			7.43		
	b	10.22			10.23		
SnGeS₃	С	6.87			6.86		
	$\alpha = \gamma$	90.00			90.00		
	β	105.45			105.32		

Compound	Lattice constants \AA for a, b , and c deg for α, β , and γ	<i>Exp</i> Ref. 15	PBE	PBE+U	SCAN	SCAN+ (U-2)	SCAN+U
	a = b	5.35	5.27	5.25	5.29	5.27	5.35
	С	10.52	10.51	10.39	10.50	10.49	10.52
Cu ₂ ZnGeS ₄	α	90.00	90.00	89.96	89.94	90.00	90.00
	β	90.00	90.00	89.98	89.96	90.00	90.00
	γ	90.00	90.00	89.98	89.99	90.00	90.00
	a = b	5.44	5.38	5.34	5.40	5.38	5.37
Cu ₂ ZnSnS ₄	С	10.84	10.75	10.67	10.82	10.75	10.72
	$\alpha = \beta = \gamma$	90.00	90.00	90.00	90.00	90.00	90.00
	а	10.17	10.57		10.54		
	b	11.51	13.02		12.94		
S	С	23.53	24.74		24.60		
	$\alpha = \gamma$	90.00	90.00		90.00		
	β	90.00	90.00		90.01		
	а	11.20	11.35	11.18	11.31	11.19	10.97
SpS	b	3.98	3.98	3.94	3.95	3.91	3.89
3113	С	4.32	4.36	4.27	4.50	4.49	4.50
	$\alpha = \beta = \gamma$	90.00	90.00	90.00	90.00	90.00	90.00
	a = b	3.64	3.68	3.62	3.67	3.63	3.60
	С	5.86	5.89	5.92	6.18	6.13	6.11
SnS_2	α	90.00	90.00	90.00	90.00	89.99	89.99
	β	90.00	90.00	90.00	90.00	90.01	90.01
	γ	120.00	120.00	120.00	120.00	119.98	119.95
755	a = b = c	5.40	5.37	5.33	5.38	5.37	5.34
2115	$\alpha = \beta = \gamma$	90.00	90.00	90.00	90.00	90.00	90.00

References

¹ G. Sai Gautam, T.P. Senftle, and E.A. Carter, Chem. Mater. **30**, 4543 (2018).

² D. Broberg, B. Medasani, N.E.R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, and G. Hautier, Comput. Phys. Commun. **226**, 165 (2018).

³ C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. Mod. Phys. **86**, 253 (2014).

⁴ M. Malitckaya, H.-P. Komsa, V. Havu, and M.J. Puska, Adv. Electron. Mater. **3**, 1600353 (2017).
⁵ W. Setyawan and S. Curtarolo, Comput. Mater. Sci. **49**, 299 (2010).

⁶ S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Comput. Mater. Sci. **68**, 314 (2013).

⁷ O. Kubaschewski and C.B. Alcock, *Metallurgical Thermochemistry*, 5th ed. (Pergamon Press, 1959).

⁸ I. Barin, *Thermochemical Data of Pure Substances* (Wiley, 1995).

⁹ D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, *Erratum: The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)]* (American Chemical Society, Washington, DC, 1989).

¹⁰ I. Hurtado, D. Neuschütz, and P. Franke, editors, *Thermodynamic Properties of Inorganic Substances* (Springer, Berlin, 1973).

¹¹ O. Madelung, U. Rössler, and M. Schulz, editors, *Non-Tetrahedrally Bonded Elements and Binary Compounds I* (Springer-Verlag, Berlin/Heidelberg, 1998).

¹² G. Kim, S. V. Meschel, P. Nash, and W. Chen, Sci. Data **4**, 170162 (2017).

¹³ B. Brunetti, V. Piacente, and P. Scardala, J. Alloys Compd. **206**, 113 (1994).

¹⁴ A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. **1**, 011002 (2013).

¹⁵ P. Villars and K. Cenzual, editors, Https://Materials.Springer.Com/ (2019).