Phase Stability and Sodium-Vacancy Orderings in a NaSICON Electrode

—Supporting Information-

Ziliang Wang, ${ }^{1}$ Sunkyu Park, ${ }^{2,3,4}$ Zeyu Deng, ${ }^{1}$ Dany Carlier, ${ }^{3,4}$ Jean-Noël Chotard, ${ }^{2,4, \#}$ Laurence Croguennec,,${ }^{3,4}$ Gopalakrishnan Sai Gautam, ${ }^{5}$ Anthony K. Cheetham, ${ }^{1,6}$ Christian Masquelier, ${ }^{2,4}$ Pieremanuele Canepa ${ }^{1,7,{ }^{*}}$
${ }^{1}$ Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
${ }^{2}$ Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex, France
${ }^{3}$ CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR CNRS 5026, F-33600, Pessac, France ${ }^{4}$ RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, F-80039 Amiens Cedex 1, France
${ }^{5}$ Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
${ }^{6}$ Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
${ }^{7}$ Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
Corresponding authors: \#jean-noel.chotard@u-picardie.fr , "pcanepa@nus.edu.sg

S1. Density Functional Theory Calculations of $\mathrm{Nax}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ 3
S1-1. Lattice parameters and structures of NxVP ground states 3
S1-2. Electronic Structure of NxVP 6
S2. Cluster Expansion model 9
S2-1. General Theory of Cluster Expansion 9
S2-2. Cluster Expansion model topology of NxVP 10
S2-3. Model fitting results 12
S2-4. Analysis of the Effective Cluster Interactions 14
S3. Monte Carlo simulations 18
S3-1. Methodology 18
S3-2. Thermodynamic integration 18
S3-3. Configuration entropy 20
S3-4. Computing Voltage Curves and Mixing Energies from DFT and gcMC Simulations 21

S1. Density Functional Theory Calculations of $\mathrm{Nax}_{2} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{3}$

In the reminder of this document the NaSICON material $\mathrm{Nax}_{\mathrm{x}} \mathrm{V}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ will be referred as $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$.

S1-1. Lattice parameters and structures of $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$ ground states

Table S1 Fractional coordinates of atoms within each ground-state ordering ($\mathrm{N}_{1} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{3} \mathrm{VP}, \mathrm{N}_{4} \mathrm{VP}$) of $\operatorname{NaSICON}$ as computed by SCAN $+U$.

$\mathrm{N}_{1} \mathrm{VP}$				$\mathrm{N}_{2} \mathrm{VP}$			
Na	0.500090	0.500026	0.499881	Na	0.49997	0.500126	0.499948
Na	0.000194	0.999900	0.999997	Na	0.999966	0.000008	0.000001
v	0.643531	0.643161	0.641416	Na	0.613554	0.247955	0.893272
v	0.143582	0.141311	0.143227	Na	0.386436	0.752072	0.106755
v	0.356334	0.356868	0.358660	v	0.647049	0.640379	0.643888
v	0.856446	0.858625	0.856852	v	0.140362	0.144156	0.149926
P	0.249946	0.537169	0.962668	v	0.352949	0.359682	0.356101
P	0.961382	0.250306	0.537604	v	0.859593	0.855845	0.850079
P	0.538668	0.962574	0.249749	P	0.245392	0.545774	0.966538
P	0.461350	0.037483	0.750211	P	0.959945	0.247939	0.542380
P	0.750062	0.462756	0.037333	P	0.532993	0.956025	0.249744
P	0.038567	0.749685	0.462426	P	0.467005	0.043995	0.750221
\bigcirc	0.869278	0.704448	0.495844	P	0.754615	0.454205	0.033502
\bigcirc	0.497020	0.871322	0.704646	P	0.039992	0.752018	0.457630
\bigcirc	0.708184	0.493030	0.870224	\bigcirc	0.880021	0.698598	0.498178
\bigcirc	0.997173	0.205447	0.370814	\bigcirc	0.502242	0.854063	0.750450
\bigcirc	0.369284	0.996451	0.204105	\bigcirc	0.718255	0.456843	0.876644
\bigcirc	0.208056	0.370642	0.992255	\bigcirc	0.009505	0.179740	0.381755
\bigcirc	0.130606	0.295845	0.504041	0	0.377730	0.966726	0.204707
\bigcirc	0.502663	0.128903	0.295189	\bigcirc	0.211782	0.363849	0.025359
\bigcirc	0.291615	0.507366	0.129647	0	0.119970	0.301290	0.501728
\bigcirc	0.002735	0.794412	0.629298	\bigcirc	0.497920	0.145899	0.249503
\bigcirc	0.630745	0.003353	0.796071	\bigcirc	0.281835	0.543131	0.123362
0	0.791668	0.629337	0.007996	\bigcirc	0.990444	0.820199	0.618236
0	0.774757	0.421747	0.556593	\bigcirc	0.622249	0.033338	0.795252
\bigcirc	0.558242	0.774623	0.419808	\bigcirc	0.788302	0.636081	0.974697
\bigcirc	0.422212	0.561550	0.775512	0	0.771634	0.409394	0.553705
0	0.058294	0.919835	0.274603	\bigcirc	0.550624	0.787934	0.428807
\bigcirc	0.275055	0.056086	0.921879	\bigcirc	0.420932	0.548271	0.782437
0	0.922325	0.275355	0.061559	0	0.065791	0.914793	0.265303
0	0.225189	0.578197	0.443517	\bigcirc	0.274425	0.079003	0.919167
0	0.441974	0.225372	0.580173	\bigcirc	0.921544	0.275139	0.071014
\bigcirc	0.577956	0.437850	0.224578	\bigcirc	0.228303	0.590566	0.446302
0	0.941952	0.080095	0.725346	\bigcirc	0.449319	0.212098	0.571148
\bigcirc	0.724976	0.944058	0.078104	\bigcirc	0.579059	0.451785	0.217589
\bigcirc	0.077766	0.724685	0.938048	\bigcirc	0.34130	退	. 734713
				\bigcirc	0.725550	0.920974	0.080775
				\bigcirc	0.078466	0.724827	0.929041

$\mathrm{N}_{3} \mathrm{VP}$				$\mathrm{N}_{4} \mathrm{VP}$			
Na	0.508358	0.520398	0.473032	Na	0.500394	0.499966	0.499615
Na	0.008026	0.973669	0.019874	Na	0.000011	0.000360	0.999611
Na	0.249906	0.889139	0.618883	Na	0.251144	0.882101	0.616106
Na	0.615045	0.248978	0.878715	Na	0.615031	0.250504	0.883187
Na	0.115077	0.378903	0.748881	Na	0.885199	0.618362	0.248126
Na	0.749860	0.119149	0.389060	Na	0.118404	0.385126	0.748155
V	0.642684	0.643899	0.646102	Na	0.750559	0.114990	0.383249
V	0.142580	0.146019	0.144093	Na	0.382048	0.751286	0.116048
V	0.359385	0.359118	0.349256	V	0.645551	0.644738	0.645072
V	0.859500	0.849310	0.858844	V	0.144654	0.145622	0.145100
P	0.246064	0.539231	0.952964	V	0.355547	0.354480	0.354726
P	0.954651	0.254100	0.540850	V	0.854524	0.855478	0.854738
P	0.547487	0.962991	0.251395	P	0.249654	0.549326	0.950317
P	0.454738	0.040691	0.754013	P	0.952452	0.249537	0.548361
P	0.746215	0.452846	0.039133	P	0.548080	0.951339	0.250952
P	0.047583	0.751313	0.462974	P	0.451274	0.048062	0.750963
0	0.873367	0.710141	0.518880	P	0.749551	0.452485	0.048344
0	0.478837	0.880762	0.707344	P	0.049343	0.749635	0.450339
0	0.688599	0.475050	0.886726	O	0.889857	0.696457	0.482446
0	0.978908	0.207236	0.380868	0	0.483328	0.886880	0.699668
0	0.372843	0.018267	0.211148	0	0.696755	0.485111	0.888237
0	0.188877	0.386574	0.975336	O	0.984994	0.196663	0.388369
0	0.123876	0.291438	0.509432	0	0.386863	0.983555	0.199592
0	0.534356	0.117559	0.299881	0	0.196333	0.389944	0.982449
0	0.305498	0.482341	0.115396	0	0.113620	0.299725	0.517762
0	0.034366	0.800122	0.617467	O	0.514226	0.109955	0.306850
0	0.624430	0.009203	0.790774	0	0.301131	0.517092	0.110977
0	0.805709	0.615049	0.982234	0	0.017138	0.801065	0.611011
0	0.769932	0.416658	0.567292	O	0.609923	0.014074	0.806910
0	0.558710	0.779719	0.418490	0	0.799826	0.613559	0.017798
0	0.409964	0.560403	0.765375	0	0.769305	0.409921	0.565998
0	0.058078	0.918531	0.279791	O	0.567482	0.767080	0.409541
0	0.270369	0.067163	0.916902	0	0.409469	0.566241	0.767342
0	0.910279	0.265317	0.060039	0	0.066381	0.909388	0.267325
0	0.225267	0.581016	0.441199	O	0.266993	0.067610	0.909476
0	0.435046	0.227561	0.587700	0	0.909833	0.269262	0.066069
0	0.589385	0.434964	0.229250	0	0.233630	0.590031	0.431957
0	0.935286	0.087710	0.727729	0	0.435852	0.230646	0.590919
0	0.724783	0.941418	0.080717	0	0.590224	0.432517	0.231611
0	0.089125	0.729303	0.935218	0	0.932455	0.090261	0.731669
				0	0.730680	0.935745	0.090990
				O	0.090126	0.733666	0.931868

Table S2 Lattice constants (in \AA and ${ }^{\circ}$), volumes (in \AA^{3}) and space groups (Spg.) of the low-temperature-stable $N_{x} \mathrm{VP}$ orderings at low temperature, namely $\mathrm{N}_{1} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{3} \mathrm{VP}, \mathrm{N}_{3.5} \mathrm{VP}$ and $\mathrm{N}_{4} \mathrm{VP}$ computed with SCAN $+U$. Note that Na intercalation in fully charged $\mathrm{N}_{1} \mathrm{VP}$ forms the fully discharged phase, $\mathrm{N}_{4} \mathrm{VP}$, resulting in a volume expansion of $\sim 9.8 \%$.

Structure	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	\boldsymbol{r}	$\boldsymbol{V} / \mathrm{f} . \mathrm{u}$.	Spg.
$\mathrm{N}_{1} \mathrm{VP}$	8.473	8.473	21.169	90.000	90.000	120.000	219.499	$R \overline{3} c$
$\mathrm{~N}_{2} \mathrm{VP}$	8.521	8.613	8.629	60.350	61.055	60.540	227.159	$P \overline{1}$
$\mathrm{~N}_{3} \mathrm{VP}$	15.038	8.729	8.689	90.000	124.709	90.000	234.409	$C c$
$\mathrm{~N}_{3.5} \mathrm{VP}$	8.672	8.694	15.202	91.110	105.621	118.923	237.715	$P \overline{1}$
$\mathrm{~N}_{4} \mathrm{VP}$	8.935	8.935	20.904	90.000	90.000	120.000	241.012	$R \overline{3} c$

Table S3 Computed average (Avg.) V-O bond lengths (in \AA) of different VO_{6} octahedra represented by their V oxidation states within $\mathrm{N}_{1} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{3} \mathrm{VP}, \mathrm{N}_{3.5} \mathrm{VP}$, and $\mathrm{N}_{4} \mathrm{VP}$. The bond lengths are averaged over all the specific octahedra within each $N_{x} V P$ ordering. In $N_{1} V P$ and $N_{2} V P$, which contain $\mathrm{V}(\mathrm{IV})$, the minimum (Min.) and maximum (Max.) V (IV)-O bond lengths are listed instead.

Structure	Avg. V-O bond length of		
	V (II) O_{6}	V (III) O_{6}	V(IV) O_{6}
$\mathrm{N}_{1} \mathrm{VP}$	-	-	Min. 1.855; Max. 1.959
$\mathrm{N}_{2} \mathrm{VP}$	-	2.003	Min. 1.818; Max. 2.038
$\mathrm{N}_{3} \mathrm{VP}$	-	2.012	-
$\mathrm{N}_{3.5} \mathrm{VP}$	2.057 for V (II) $/ \mathrm{V}$ (III) $\mathrm{O}_{6} ; 2.015$ for V (III) O_{6}		
$\mathrm{N}_{4} \mathrm{VP}$	2.062 for V (II) $/ \mathrm{V}$ (III$) \mathrm{O}_{6}$		

S1-2. Electronic Structure of $\mathbf{N}_{\mathrm{x}} \mathrm{VP}$

Figure $\mathbf{S 1}$ shows the SCAN $+U$ calculated density of states (DOS) for the four thermodynamic ground-state structures.

Figure S1 The total (gray) and element-projected (green for V, orange for O, blue for Na) DOS of the most stable $\mathrm{Nax}_{\mathrm{x}} \mathrm{V}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ phases. Na contents vary from $\mathrm{x}=1$ (panel (a)) to $\mathrm{x}=4$ (panel (d)). The vertical dashed lines denote the Fermi energy level, and the band gap is calculated from SCAN+U based DFT.

From Figure S1, we deduce that the vanadium 3d states dominate the valence band, and the band gap for $N_{1} V P, N_{2} V P, N_{3} V P$ and $N_{4} V P$ is $0.7 \mathrm{eV}, 0.3 \mathrm{eV}, 1.4 \mathrm{eV}$, and 0 eV , respectively. Except for $\mathrm{N}_{3} \mathrm{VP}$ where the gap opens due to the stabilization induced by the rhombohedral-to-monoclinic distortion, the band gap generally narrows as Na intercalation progresses from $x=1$ to 4 .

Figure $\mathbf{S 2}$ shows the spin-polarized DOS projected onto the 3d orbitals of vanadium in $\mathrm{N}_{3} \mathrm{VP}$.

Figure S2 The projected DOS onto the 3d orbitals of vanadium in N_{3} VP. Panels (a) to (c) show the $t_{2 g}$ orbitals of vanadium (i.e., $d_{x y}, d_{x z}$, and $d_{y z}$) at valence band, and panels (d) and (e) show the e_{g} orbitals (i.e., $d_{z^{2}}$, and $d_{x^{2}-y^{2}}$) which are corresponding to the conduction band.

Figure S 3 shows the band structure of $\mathrm{N}_{4} \mathrm{VP}$, where only 4 bands populate the Fermi energy level.

Figure S3 The band structure of $\mathrm{Na}_{4} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ computed from SCAN+U DFT calculation. The x axis shows the high symmetry K-point path, and the Fermi energy level is represented by the black horizontal line.

In Table S4, we list the computed average magnetic moments on the vanadium sites in $\mathrm{N}_{1} \mathrm{VP}$, $\mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{3} \mathrm{VP}, \mathrm{N}_{3.5} \mathrm{VP}$, and $\mathrm{N}_{4} \mathrm{VP}$, and assign the corresponding vanadium oxidation states.

Table S4 The DFT-computed magnetic moments (in μ_{B}) of vanadium sites within the NaSICON structures and assigned oxidation states.

Compound	Oxidation States and Computed Magnetic Moments			
	V(II)	V(III)	V(IV)	
$\mathrm{N}_{1} \mathrm{VP}$	-	-	$\mu_{\mathrm{B}}=1.0$	
$\mathrm{~N}_{2} \mathrm{VP}$	-	$\mu_{\mathrm{B}}=1.8$	$\mu_{\mathrm{B}}=1.1$	
$\mathrm{~N}_{3} \mathrm{VP}$	-		$\mu_{\mathrm{B}}=1.9$	-
$\mathrm{N}_{3.5} \mathrm{VP}$	-	$\mu_{\mathrm{B}}=1.9-2.3$	-	
$\mathrm{N}_{4} \mathrm{VP}$		$\mu_{\mathrm{B}}=\sim 2.3$	-	

Our DFT data demonstrates that the intercalation of Na ions into the N_{1} VP is realized by the reduction of $\mathrm{V}(\mathrm{IV})$ to V (III) to form $\mathrm{N}_{3} \mathrm{VP}$. Specifically, $\mathrm{N}_{1} \mathrm{VP}$ and $\mathrm{N}_{3} \mathrm{VP}$ are identified by a single vanadium oxidation state, namely $\mathrm{V}(\mathrm{IV})$ in $\mathrm{N}_{1} \mathrm{VP}$ and V (III) in $\mathrm{N}_{3} \mathrm{VP}$, while the charge ordering on vanadium sites in $\mathrm{N}_{2} \mathrm{VP}$ is clearly indicated by the distinct magnetic moments exhibited by $\mathrm{V}(\mathrm{IV})$ and V (III) ions. Further Na^{+}intercalation into $\mathrm{N}_{3} \mathrm{VP}$ gives rise to $\mathrm{N}_{3.5} \mathrm{VP}$ and $\mathrm{N}_{4} \mathrm{VP}$, accompanied by the appearance of a fractional V oxidation state of 2.5 , due the metallic transformation (see Figures S1 to S3) and consequent delocalization of 3d electrons on vanadium sites. Thus, we obtained average magnetic moments ranging from $1.9 \mu_{\mathrm{B}}$ to $2.3 \mu_{\mathrm{B}}$ (per vanadium), which are represented by the mixed states of V (III) and V (II).

S2. Cluster Expansion model

S2-1. General Theory of Cluster Expansion

We developed a CE Hamiltonian to parameterize the mixing energies ($E_{\text {mixing }}(\sigma)$ in Eq. 7) calculated from DFT (see Section S1) of various Na /vacancy orderings. The fitting of the CE was performed using the cluster assisted statistical mechanics (CASM) package. ${ }^{1-4}$ The CE Hamiltonian was mapped onto a fixed prototypical structure, which we chose to be $\mathrm{N}_{4} \mathrm{VP}$ (see Section S2-2), and we wrote the CE as a truncated summation of effective cluster interactions (ECIs) composed of pair, triplet, and quadruplet clusters according to Eq. 1.

$$
\begin{equation*}
E_{\text {mixing }}(\sigma)=\sum_{\alpha} J_{\alpha} \Phi_{\alpha}(\sigma)=\sum_{\alpha} J_{\alpha} \mathrm{m}_{\alpha} \prod_{i \in \beta}\left(\sigma_{i}\right) \tag{1}
\end{equation*}
$$

where $E_{\text {mixing }}(\sigma)$ is the mixing energy as a function of Na /vacancy ordering (σ). Each term in the sum is written by the product of the $\mathrm{ECl}\left(J_{\alpha}\right)$ of cluster α and its cluster function $\left(\Phi_{\alpha}(\sigma)\right)$, which incorporates the multiplicity of the cluster (m_{α}) and the correlation matrix ($\Pi(\sigma)$) averaged over all clusters β that are symmetrically equivalent to α. Based on the Chebyshev definition, each Na site occupied by Na ion assumes $\sigma_{\mathrm{i}}=-1$ and each vacancy assumes $\sigma_{\mathrm{i}}=+1 . \Phi_{\alpha}$ was generated within a radius of 10,6 , and $5 \AA$ for the pairs, triplets, and quadruplets, respectively.

To evaluate the accuracy and predictability of the CE against the DFT mixing energy, the root mean squared error (RMS) and the leave-one-out cross-validation scores (LOOCV) were simultaneously minimized using the compressive sensing algorithm. ${ }^{5}$ Specifically, we used a value of $\alpha=1 \times 10^{-4}$ to penalize the L1 norm consisting of the magnitude of all ECIs and the RMS of fitted energies. ${ }^{5}$

S2-2. Cluster Expansion model topology of NxVP

Table $\mathbf{S 5}$ shows the atom types and coordinates of the $\mathrm{N}_{4} \mathrm{VP}$ rhombohedral structure, on which the CE model is developed to map the various Na /vacancy orderings. The lattice parameters of the $\mathrm{N}_{4} \mathrm{VP}$ structure $(R \overline{3} c)$ are $a=b=8.936 \AA, c=20.92 \AA, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$. Note that the coordinates listed below have not been optimized with DFT.

Table S5 Atom sites and fractional coordinates of the model topology cell of $\mathrm{N}_{4} \mathrm{VP} . \mathrm{Na}(1)$ and $\mathrm{Na}(2)$ sites for Na ions to occupy are consistent with the labels indicated in Figure $\mathbf{1}$ of the main article.

Atom Site	Site Index and type	\mathbf{x}	y	z
$\mathrm{Na} / \mathrm{Va}$	$0 \mathrm{Na}(1)$	0.500001	0.500001	0.500001
$\mathrm{Na} / \mathrm{Va}$	$1 \mathrm{Na}(1)$	0.000001	0.000001	0.000001
$\mathrm{Na} / \mathrm{Va}$	$2 \mathrm{Na}(2)$	0.116602	0.749998	0.383415
$\mathrm{Na} / \mathrm{Va}$	$3 \mathrm{Na}(2)$	0.749998	0.383415	0.116602
$\mathrm{Na} / \mathrm{Va}$	$4 \mathrm{Na}(2)$	0.383415	0.116602	0.749998
$\mathrm{Na} / \mathrm{Va}$	$5 \mathrm{Na}(2)$	0.616602	0.883415	0.249998
$\mathrm{Na} / \mathrm{Va}$	$6 \mathrm{Na}(2)$	0.883415	0.249998	0.616602
$\mathrm{Na} / \mathrm{Va}$	$7 \mathrm{Na}(2)$	0.249998	0.616602	0.883415
V	8	0.353862	0.353862	0.353862
V	9	0.853862	0.853862	0.853862
V	10	0.646141	0.646141	0.646141
V	11	0.146141	0.146141	0.146141
P	12	0.450427	0.750001	0.049581
P	13	0.750001	0.049581	0.450427
P	14	0.049581	0.450427	0.750001
P	15	0.950427	0.549581	0.250001
P	16	0.549581	0.250001	0.950427
P	17	0.250001	0.950427	0.549581
0	18	0.301094	0.111477	0.517259
0	19	0.111477	0.517259	0.301094
0	20	0.517259	0.301094	0.111477
0	21	0.801094	0.017259	0.611477
0	22	0.017259	0.611477	0.801094
0	23	0.611477	0.801094	0.017259
0	24	0.698911	0.888527	0.482756
0	25	0.888527	0.482756	0.698911
0	26	0.482756	0.698911	0.888527
0	27	0.198911	0.982756	0.388527
0	28	0.982756	0.388527	0.198911
0	29	0.388527	0.198911	0.982756
0	30	0.589832	0.232484	0.432262
0	31	0.232484	0.432262	0.589832
0	32	0.432262	0.589832	0.232484
0	33	0.089832	0.932262	0.732485
0	34	0.932262	0.732484	0.089832
0	35	0.732484	0.089832	0.932262
0	36	0.41017	0.767523	0.567745
0	37	0.767523	0.567745	0.41017
0	38	0.567745	0.41017	0.767523
0	39	0.91017	0.067745	0.267523

O	40	0.067745	0.267523	0.91017
O	41	0.267523	0.91017	0.067745

S2-3. Model fitting results

Figure S4 plots the formation (mixing) energies vs. Na compositions generated by CE (red) and DFT (blue). The corresponding error of CE model against DFT are also shown.

Figure S4 DFT and CE predicted formation (mixing) energies $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$. The convex hulls with solid red line. Panel (a) shows the mixing energies of $N_{x} V P$ (range $1 \leq x \leq 3$) vs. Na content (x), and the corresponding error of the CE model is shown in panel (b). Panels (c) and (d) depict the mixing energies vs. Na contents (range $3 \leq x \leq 4$) and the error of the CE model, respectively. In panels (a) and (c), DFT and CE convex hulls are shown by solid blue (not visible) and red lines, where blue stars and red hexagons indicate the stable configurations forming the convex hull line. Blue and red dots depict the mixing energies of unstable configurations from DFT and the CE model respectively. In panels (b) and (d), the dashed lines denote the confidence intervals (of ± 10 and $\pm 20 \mathrm{meV} / \mathrm{f} . \mathrm{u}$.) of the CE models.

Separate CE models are fitted in the Na composition range $1 \leq \mathrm{x} \leq 3$ (Figure S4(a)) and $3 \leq x \leq 4$ (Figure S4(c)), respectively, resulting in two sets of ECls. The separation of the CE fitting is due to the differences between the electronic structure of the Na -poor (semiconducting) and Na-rich (metallic) regions of $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$ (see Section S1-3). Based on panels (a) and (c) of Figure S4, our CE models well reproduced the DFT-calculated ground state configurations, i.e., $\mathrm{N}_{1} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{3} \mathrm{VP}$, and $\mathrm{N}_{4} \mathrm{VP}$. Specifically, the RMS and LOOCV errors of the CE model for $1 \leq x \leq 3$ is $\sim 14.85 \mathrm{meV} / \mathrm{f} . \mathrm{u}$. ($\sim 0.71 \mathrm{meV} /$ atom), and $\sim 22.4 \mathrm{meV} / \mathrm{f} . \mathrm{u}$. ($\sim 1.07 \mathrm{meV} /$ atom), respectively. For $3 \leq \mathrm{x} \leq 4$, the RMS and LOOCV of CE were ~ 11.45 $\mathrm{meV} / \mathrm{f} . \mathrm{u}$. ($\sim 0.55 \mathrm{meV} /$ atom), and $\sim 18.9 \mathrm{meV} / \mathrm{f} . u$. ($\sim 0.9 \mathrm{meV} /$ atom), respectively.

To further quantify the accuracy of our CE models, the errors of the CE are shown in panels (b) and (d) of Figure S4. The plotted error values are the differences between the CEpredicted and corresponding DFT-calculated $E_{\text {mixing }}$ for $1 \leq \mathrm{x} \leq 3$ (panel (b)), and $3 \leq \mathrm{x} \leq$ 4 (panel (d)), respectively.

S2-4. Analysis of the Effective Cluster Interactions

Table S6 lists the 33 distinctive effective cluster interactions (ECIs) of our CE model fitted in the composition region $\mathrm{N}_{1} \mathrm{VP}-\mathrm{N}_{3} \mathrm{VP}$.

Table S6. ECIs for CE model fitted on Na composition region $1 \leq x \leq 3$ of $N_{x} V P$. Site refers to the site labelled in Table S5. Min. and Max. show the minimum and maximum lengths of each ECI term, respectively, and multi. is the multiplicity of each cluster. The reference cell is labelled as $[0,0,0]$.

Cluster type	Index	Site	Cell	Min. ((${ }^{\text {) }}$	Max. (${ }^{\text {(}}$)	$\mathrm{ECl}(\mathrm{meV})$	ECI/multi. (meV)
Point tems	2	4	$[0,0,0]$	-	-	1655.913	275.986
	3	0	$[0,0,0]$	-	-	916.37	458.185
Pair Terms	4	4//0	$\left.\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & 0, & 0 \end{array}\right]$	3.334	3.334	234.366	39.061
	5	4//1	$\left.\begin{array}{lll} {[0,} & 0, & 0 \\ {[0,} & 0, & 1 \end{array}\right]$	3.334	3.334	265.402	44.234
	6	4//6	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[-1,} & 0, & 0] \end{array}$	4.498	4.498	31.386	5.231
	8	4//5	$\begin{array}{lrl} {[0,} & 0, & 0] \\ {[0,} & -1, & 0] \end{array}$	4.812	4.812	-26.142	-4.357
	9	4/12	$\begin{array}{lll} {[0,} & 0, & 0 \\ {[0,} & 0, & 0] \end{array}$	4.922	4.922	14.415	2.403
	11	4/12	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[1,} & -1, & 0] \end{array}$	5.674	5.674	15.998	2.666
	14	0//1	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[1,} & 0, & 0] \end{array}$	6.227	6.227	18.582	3.097
	17	4//5	$\begin{array}{lll} {[0,} & 0, & 0 \\ {[0,} & 0, & 0] \end{array}$	6.668	6.668	-11.809	-1.968
	18	4/12	$\begin{array}{ccc} {[0,} & 0, & 0] \\ {[0,} & -1, & 0] \end{array}$	6.992	6.992	100.595	16.766
	25	4//5	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[-1,} & 0, & 0 \end{array}$	8.109	8.109	-13.176	-2.196
	31	4//4	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & -1, & 0] \end{array}$	8.674	8.674	-208.75	-34.792
	32	4//4	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[-1,} & 0, & 0] \end{array}$	8.674	8.674	-206.17	-34.362
	33	0//0	$\begin{array}{ccc} {[0,} & 0, & 0 \\ {[0,} & 0, & -1] \end{array}$	8.674	8.674	-87.795	-14.632
	34	4//4	$\begin{array}{lll} {[0,} & 0, & 0 \\ {[0,} & 0, & -1] \end{array}$	8.674	8.674	-40.975	-6.829
	35	4//3	$\begin{array}{ccc} {[0,} & 0, & 0] \\ {[0,} & -1, & 0] \end{array}$	8.841	8.841	14.931	2.489
	37	4/77	$\begin{array}{lll} {[0,} & 0, & 0 \\ {[1,} & -1, & -1] \end{array}$	8.875	8.875	-10.004	-1.667
	38	4//6	$\begin{array}{lll} {\left[\begin{array}{ll} 0 & 0, \end{array}\right.} \\ {[-1,} & -1, & 1] \end{array}$	8.875	8.875	-21.766	-3.628
	39	4//4	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[1,} & -1, & 0] \end{array}$	8.936	8.936	169.372	28.229
	43	4//5	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[1,} & -1, & 0] \end{array}$	9.038	9.038	-3.663	-0.61
	46	4//1	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[1,} & 1, & 0] \end{array}$	9.416	9.416	-41.499	-6.917

	49	4//0	$\begin{array}{lll} {[0,} & 0, & 0 \\ {[-1,} & -1, & 1] \end{array}$	9.416	9.416	-29.701	-4.95
Triplet Terms	51	4//6//1	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[-1,} & 0, & 0] \\ {[0,} & 0, & 1] \end{array}$	3.334	4.498	22.742	3.79
	53	4//0//2	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \end{array}$	3.334	4.922	-19.119	-3.187
	55	4//5//3	$\begin{array}{lll} {[0,} & -1, & 0] \\ {[0,} & 0, & 0] \end{array}$	4.498	4.922	-12.501	-2.084
	57	4//2//1	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & -1 & 1] \\ {[0,} & 0, & 1] \\ {[0,} & 0, & 0] \end{array}$	3.333	4.922	-63.981	-10.664
	59	4//5//7	$\begin{array}{lll} {[0,} & -1, & 0] \\ {[0,} & -1, & 0] \end{array}$	4.498	4.922	-23.974	-3.996
	60	4//2//3	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & -1, & 1] \\ {\left[\begin{array}{lll} -1, & 0, & 1] \end{array}\right.} \end{array}$	4.922	4.922	-14.025	-7.013
	61	4//5//6	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & -1, & 0] \\ {[-1,} & 0, & 0] \end{array}$	4.498	5.674	-15.809	-2.635
	62	4//5//2	$\left.\begin{array}{lll} {[0,} & 0, & 0 \end{array}\right] \begin{array}{ll} {[0,} & -1, \\ {\left[\begin{array}{ll} 1, & -1, \end{array}\right.} & 0] \end{array}$	4.498	5.674	-13.268	-2.211
Quadruplet Terms	66	4//0//2//3	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \end{array}$	3.334	4.922	31.171	15.586
	68	4//2//3//1	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \\ {[0,} & -1, & 1] \\ {[-1,} & 0, & 1] \\ {[0,} & 0, & 1] \end{array}$	3.334	4.922	5.385	2.693

Table $\mathbf{S 7}$ reports the 20 distinctive ECIs in the CE model fitted on $N_{3} \mathrm{VP}-\mathrm{N}_{4} \mathrm{VP}$ region.
Table S7 ECls of CE model fitted on Na composition region $3 \leq x \leq 4$ of $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$.

cluster type	index	site	cell	Min. (Å)	Max. (Å)	ECI (meV)	ECI/multi. (meV)
Point Terms	2	4	[0, 0, 0]	-	-	-527.5	-87.917
	3	0	[0, 0, 0]	-	-	136.003	68.001
Pair Terms	4	4//0	$\begin{array}{lll} {[0,} & 0, & 0] \\ {[0,} & 0, & 0] \end{array}$	3.333	3.333	772.842	128.807
	6	4//6	$\begin{aligned} & {[0,0,0]} \\ & {[-1,0,0]} \end{aligned}$	4.498	4.498	81.938	13.656
	7	4//7	$\left.\begin{array}{ll} {[0,} & 0, \\ {[0]} \\ {[0,} & -1, \end{array}\right]$	4.498	4.498	108.13	18.022
	8	4//5	$\left.\begin{array}{l} {[0,0,0]} \\ {[0,} \end{array}-1,0\right]$	4.812	4.812	58.163	9.694
	9	4//2	$\left.\begin{array}{ll} {[0,} & 0, \end{array}\right]$	4.922	4.922	104.309	17.385
	10	4//2	$\left.\begin{array}{l} {[0,0,0]} \\ {[0,} \end{array}-1,1\right]$	4.922	4.922	173.898	28.983
	11	4//2	$\begin{aligned} & {[0,0,0]} \\ & {[1,-1,0]} \end{aligned}$	5.674	5.674	74.069	12.345
	18	4//2	$\left.\begin{array}{l} {[0,0,0]} \\ {[0,} \end{array}-1,0\right]$	6.992	6.992	122.151	20.358
	22	4//0	$\begin{aligned} & {[0,0,0]} \\ & {[-1,0,0]} \end{aligned}$	7.706	7.706	109.077	18.179
	32	4//4	$\begin{aligned} & {[0,0,0]} \\ & {[-1,0,0]} \end{aligned}$	8.674	8.674	-10.286	-1.714
	40	4//4	$\left.\begin{array}{l} {[0,} \\ {[0,} \end{array} 0\right]$	8.936	8.936	3.172	0.529
	42	4//4	$\left.\begin{array}{l} {[0,} \\ {[0,} \\ {[1,} \end{array}\right]$	8.936	8.936	1.11	0.185
Triplet Terms			[0, 0, 0]				
	53	4//0//2	$\begin{array}{lll} {[0,} & 0 & 0] \\ {[0,} & 0 & 0] \end{array}$	3.334	4.922	-79.109	-13.185
			[0, 0, 0]				
	60	4//2//3	[0, -1, 1]	4.922	4.922	-2.09	-1.045
			$\left.\begin{array}{l} {[-1,} \\ {[0,1]} \\ {[0,} \end{array} 0,0\right]$				
	62	4//5//2	[0, -1, 0]	4.498	5.674	13.296	2.216
			[1, -1, 0]				
			[0, 0, 0]				
	64	4//2//3	$[1,-1,0]$	5.674	5.674	-5.466	-2.733
Quadruplet Terms	65	4//7//6//1	$\left.\begin{array}{l} {[0,0,0]} \\ {[0,} \end{array}-1,0\right]$	3.334	4.922	-26.638	-4.44
			$[0,0,1]$				
			[0, 0, 0]				
	67	4//7//2//1	$\begin{aligned} & {[0,-1,0]} \\ & {[0,-1,1]} \\ & {[0,0,1]} \end{aligned}$	3.334	4.922	-4.215	-4.036

Figure $\mathbf{S 5}$ plots the relevant most significant ECIs (normalized by their multiplicities) as a function of their cluster index.

Figure S5 Normalized ECls vs. their cluster function index identified during the CE fitting. ECls for the $C E$ in the Na composition range (a) $1 \leq x \leq 3$ and (b) $3 \leq x \leq 4$.

For the CE model fitted on Na composition region $1 \leq \mathrm{x} \leq 3$ (of Table S6 and Figure S5(a)), out of the 33 clusters, 21 are pairs, 8 are triplets and 2 are quadruplets, where the pairs are the most dominant in terms of ECI/multiplicity (red dots in Figure S5(a)). The pairs \#31 and \#32 are the most stabilizing term for like-species (i.e., $\mathrm{Na}-\mathrm{Na}$ or vacancy-vacancy) with ECI/multiplicity of -34.792 meV and -34.362 meV , respectively. In contrast, pairs \#4 (~ 39.061 meV) and \#5 ($\sim 44.234 \mathrm{meV}$) have a significantly stabilizing contribution for unlike-species (i.e., Na-vacancy) in our model. For the CE model fitted on Na composition range $3 \leq \mathrm{x} \leq 4$ (of Table S7 and Figure S5(b)), out of the 20 clusters, 12 are pair interactions, 4 are triplets and 2 are quadruplets, respectively. The most significant pair is \#4 ($\sim 128.807 \mathrm{meV}$), which stabilizes Na -vacancy configurations.

S3. Monte Carlo simulations

S3-1. Methodology

We used the CASM package to perform the grand-canonical Monte Carlo (gcMC) simulations ${ }^{6}$ on $16 \times 16 \times 16$ supercells of the primitive rhombohedral structure. The gcMC runs ranged between $32,768,000$ and $327,680,000$ steps and were conducted independently in three composition regions of $\mathrm{N}_{1} \mathrm{VP}-\mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}-\mathrm{N}_{3} \mathrm{VP}$, and $\mathrm{N}_{3} \mathrm{VP}-\mathrm{N}_{3.5} \mathrm{VP}-\mathrm{N}_{4} \mathrm{VP}$.

S3-2. Thermodynamic integration

The gcMC simulations were performed for $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$ system in the chemical potential (μ) and temperature (T) space, and were then converted into (T, x) space to define the phase boundaries in Figure 2. Based on the 2 separate CE fits discussed in Section S2, our gcMC using CE model fitted for the composition region $\mathrm{N}_{1} \mathrm{VP}-\mathrm{N}_{3} \mathrm{VP}$ started from $\mathrm{T}=10 \mathrm{~K}$ to 1600 K with a step of 1 K at $\mu=-4.5,-3.6$, and $-2.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$., corresponding to $\mathrm{N}_{1} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}$, and $\mathrm{N}_{3} \mathrm{VP}$, respectively. At every T, μ was scanned in both forward ($\mu=-4.5$ and $-3.6 \mathrm{eV} / \mathrm{f} . u$.) and backward ($\mu=-3.6$ and $-4.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$.) directions with a step of $0.01 \mathrm{eV} / \mathrm{f} . \mathrm{u}$. to cover the relevant Na composition regions. Similarly, the gcMC using CE model fitted for $\mathrm{N}_{3} \mathrm{VP}-\mathrm{N}_{4} \mathrm{VP}$ scanned at the same temperature interval at $\mu=6.5,7.2$, and $9.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$., indicated by $\mathrm{N}_{3} \mathrm{VP}, \mathrm{N}_{3.5} \mathrm{VP}$, and $\mathrm{N}_{4} \mathrm{VP}$, respectively.

The phase boundaries were identified by the lowest envelopes of the grand-canonical potential (ϕ) of each stable phase. ϕ was computed as in Eq. 2,

$$
\begin{equation*}
\phi=E-T S-\mu x \tag{2}
\end{equation*}
$$

where E is the energy calculated from CE model, T is the temperature, S is the configurational entropy, μ is the Na chemical potential, and x represents the Na composition in $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$. To remove the numerical hysteresis for gcMC, which might cause the different voltage curves while simulating along charging/discharging process, we performed the thermodynamic integration. ${ }^{7}$ At fixed μ and variable T, ϕ was calculated using Eq. 3,

$$
\begin{align*}
\phi(\beta, \mu)= & \frac{\beta_{0}}{\beta} \phi_{0}\left(\beta_{0}, \mu\right)+\frac{1}{\beta} \int_{\beta_{0}}^{\beta}(E-\mu x) d \beta \tag{3}\\
& \text { with } \phi_{0}\left(\beta_{0}, \mu\right)=E-\mu x
\end{align*}
$$

where $\beta=\frac{1}{k_{B} T}$, and k_{B} is the Boltzmann's constant. The starting values $\phi_{0}\left(\beta_{0}, \mu\right)$ can be approximated as $E-\mu x$ because of the negligible entropy contribution at low temperature (i.e., $T=10 \mathrm{~K}$).

Then at each T, ϕ was integrated by variable μ in both forward and backward directions using Eq. 4,

$$
\begin{align*}
& \phi(\beta, \mu)=\phi_{0}\left(\beta, \mu_{0}\right)-\frac{1}{\beta} \int_{\mu_{0}}^{\mu} x d \mu \tag{4}\\
& \text { with } \phi_{0}\left(\beta, \mu_{0}\right)=\phi_{\text {heating }}\left(\beta, \mu_{0}\right)
\end{align*}
$$

the integration at each μ start from $\phi_{\text {heating }}\left(\beta, \mu_{0}\right)$, where $\mu_{0}=-4.5,-3.6,-2.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$. for $1 \leq$ $\mathrm{x} \leq 3$, and 6.5, 7.2 and $9.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$. for $3 \leq \mathrm{x} \leq 4$, respectively.

After the thermodynamic integration the phase boundaries were found at the intersections of grand-canonical potential envelops in the (x, T) space, which was converted from (μ, T) space. The discontinuities in x vs μ and variations of C_{v} vs. μ were further considered to identify the phase boundaries, as shown in Figure S6.

Figure S6 Variations of normalized heat capacity C_{v} (per f.u.) and Na composition x vs. Na chemical potential μ, at $T=680 \mathrm{~K}$, obtained from gcMC. The region of $-4.5 \leq \mu \leq-2.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$. is simulated using CE model fitted for the composition range $\mathrm{N}_{1} \mathrm{VP}-\mathrm{N}_{3} \mathrm{VP}$, and the region of $\mu \geq 6.5 \mathrm{eV} / \mathrm{f} . \mathrm{u}$. is simulated using CE model fitted for the composition range $N_{3} V P-N_{4} V P$. The discontinuities of x vs. μ curve (red) indicates the stable single-phases at $x=1,2,3$, and their relevant phase boundaries. The solid solution behavior is also shown with the continuous sloping curve at $N_{3} V P-N_{4} V P$ region.

S3-3. Configuration entropy

Figure $\mathbf{S 7}$ plots the configurational entropy for Na composition region $1 \leq \mathrm{x} \leq 3$ generated by gcMC.

Figure S7 Computed configurational entropy $S(x)$ obtained from gcMC simulations as a function of Na content x in N_{x} VP and at specific temperatures $300 \mathrm{~K}, 500 \mathrm{~K}$ (panel(a)), 800 K (panel(b)), and 1000 K (panel(c)).

S3-4. Computing Voltage Curves and Mixing Energies from DFT and gcMC Simulations

Reversible Na^{+}insertion/extraction into/from $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$ structure is given by Eq. 5.

$$
\begin{equation*}
N a_{x} V_{2}\left(\mathrm{PO}_{4}\right)_{3}+y \mathrm{Na}^{+}+y e^{-}-\stackrel{\Delta G^{0}}{\longleftrightarrow} N a_{x+y} V_{2}\left(\mathrm{PO}_{4}\right)_{3} \tag{5}
\end{equation*}
$$

where x indicates the initial Na content and y indicates the number of inserted $\mathrm{Na}^{+} . \Delta G^{0}$ is the change of Gibbs free energy for the reaction of Eq. 5, can be approximated from DFT total energies by ignoring the zero-point energy correction, pV, and entropic effects. Notably, configurational entropic effects can be included in ΔG^{0} using the statistical sampling from gcMC simulations.

The corresponding average intercalation voltage for the reaction of Eq. $\mathbf{5}$ is derived based on ΔG^{0} using Eq. 6.

$$
\begin{equation*}
V=-\frac{\Delta G^{0}}{y F} \approx-\frac{E\left(N_{x+y} V P\right)-\left[E\left(N_{x} V P\right)+y \mu_{N a}\right]}{y F} \tag{6}
\end{equation*}
$$

where $\mu_{N a}$ is the Na chemical potential (set to the bulk Na metal) and F is the Faraday constant.

To evaluate the phase stability while intercalating Na^{+}into the $\mathrm{N}_{\mathrm{x}} \mathrm{VP}$ structure, we computed the mixing energies ($E_{\text {mixing }}$) at different Na compositions, using Eq. 7, and defined with respect to the energy of $\mathrm{N}_{1} \mathrm{VP}$ and $\mathrm{N}_{4} \mathrm{VP}$ end-member compositions.

$$
\begin{equation*}
E_{\text {mixing }}(x)=E\left[N_{x} V P\right]-\left(\frac{4-x}{3}\right) E\left[N_{1} V P\right]-\left(\frac{x-1}{3}\right) E\left[N_{4} V P\right] \tag{7}
\end{equation*}
$$

where $E\left[N_{x} V P\right], E\left[N_{1} V P\right]$, and $E\left[N_{4} V P\right]$ are the DFT energies of a given $\mathrm{N}_{x} \mathrm{VP} \mathrm{Na} /$ vacancy orderings, the fully discharged ($\mathrm{N}_{4} \mathrm{VP}$), and the fully charged ($\mathrm{N}_{1} \mathrm{VP}$) structures. Note, the mixing energies can be used interchangeably with formation energies in our study. The structures with the lowest mixing energies (i.e., $N_{1} \mathrm{VP}, \mathrm{N}_{2} \mathrm{VP}, \mathrm{N}_{3} \mathrm{VP}$, and $\mathrm{N}_{4} \mathrm{VP}$) were used to construct the convex hull through a convex minimization at 0 K .

Additionally, the voltage curves at different temperatures are calculated from the Na chemical potential $\mu_{N a}(x)$ of gcMC, using Eq. 8.

$$
\begin{equation*}
V(x)=-\mu_{N a}(x)+\Delta \mu_{\text {shift }} \tag{8}
\end{equation*}
$$

The voltage at each Na composition is obtained by applying a chemical potential shift, $\Delta \mu_{\text {shift }}$, to $\mu_{\mathrm{Na}}(\mathrm{x})$ from the gcMC. $\Delta \mu_{\text {shift }}$ measures the difference between the DFT-derived average voltage at a specific Na composition range (i.e., 1 $\leq x \leq 3$, or $3 \leq x \leq 4$) and the gcMC average chemical potential μ_{Na} for the same range, referenced to the structure with the least configurational entropy (since least configurational entropy \approx negligible shift in G with T).

References

1 A. Van der Ven, J. C. Thomas, Q. Xu and J. Bhattacharya, Math. Comput. Simul., 2010, 80, 13931410.

2 B. Puchala and A. Van der Ven, Phys. Rev. B, 2013, 88, 094108.
3 J. C. Thomas and A. V. der Ven, Phys. Rev. B, 2013, 88, 214111.
4 CASM Developers, Casmcode: V0.2.1, Zenodo, 2017.
5 L. J. Nelson, G. L. W. Hart, F. Zhou and V. Ozoliņš, Phys. Rev. B, 2013, 87, 035125.
6 K. Binder, D. Heermann, L. Roelofs, A. J. Mallinckrodt and S. McKay, Comput. Phys., 1993, 7, 156.

7 A. van de Walle and M. Asta, Model. Simul. Mater. Sci. Eng., 2002, 10, 521-538.

