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Overview of theoretical methods 

The studies summarized in the manuscript utilize a variety of theories, a brief overview of which 

is given below. A detailed discussion on appropriate approximations to invoke in solid-state QM 

calculations can be found in the reviews by Bendavid and Carter,1 Cramer and Truhlar,2 and 

Harvey.3 Examples of how QM calculations can be used to describe TMOs and their alloys for 

allied phenomena such as photocatalysis can be found in the review by Liao and Carter,4 and Le 

Bahers et al.5  

Bulk energies 

A variety of approximations within the general framework of the density functional theory 

(DFT)6,7 can be used  for quantitative or qualitative evaluation of energetic and electronic 

properties, including the systems of interest in this review, i.e., pure, doped, or alloyed NiO, CoO, 

FeO, Cu2O, and Cu2ZnSnS4 (CZTS).8–12 The most important term that dictates the accuracy of 

DFT calculations is the choice of the necessarily approximate exchange-correlation (XC) 

functional.13 Common XC functionals for condensed matter include the local density 

approximation (LDA)14,15 and the Perdew-Burke-Ernzerhof (PBE) implementation of the 

generalized gradient approximation (GGA).16 The strongly constrained appropriately normed 
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(SCAN) functional17 introduced recently was shown to satisfy all 17 known constraints for the 

behavior of an XC functional, unlike the GGA or the LDA,13 a truly impressive achievement. 

Gautam et al.12 therefore employed SCAN to understand the influence of dopants on defect 

energetics in CZTS. Although SCAN is formally very appealing, density of states (DOS) 

calculations in CZTS12 reveal that SCAN still exhibits the typical failure of pure density 

functionals: it fails to reproduce experimental band gaps.  The lack of a derivative discontinuity in 

all pure density XC functionals is the source of this error.18 

Pure DFT approximations, especially the LDA and the GGA, suffer from self-interaction 

errors (SIE),15 owing to an inaccurate description of electron exchange interactions. Consequently, 

such approximations often fail to reproduce ground-state properties such as formation energies 

and lattice parameters,19–24 especially in open-shell, transition-metal compounds.25 Additionally, 

as a ground-state theory, pure DFT approximations usually underestimate band gaps of 

semiconductors.26,27 Prior studies have shown that either adding a Hubbard U correction to the 

DFT Hamiltonian (resulting in a DFT+U framework)28,29 or incorporating some exact exchange 

from Hartree-Fock (HF) theory via hybrid functionals (e.g., Heyd-Scuseria-Ernzerhof, HSE30 or 

PBE031) often yield better quantitative estimations of formation energies and qualitative 

predictions of band gaps. Specifically, DFT+U has the advantage of not adding significant 

computational cost to a DFT calculation, unlike hybrid functionals in periodic planewave basis 

calculations that can be two orders of magnitude more expensive.30 However, the magnitude of U 

is not known a priori and must be separately determined and validated, preferably by ab initio 

approaches.32–35 Hence, the DFT+U framework, among others, was used to study the bulk stability 

of all the TMO systems reviewed in the main text (NiO, CoO, FeO, and Cu2O). The specific U 

values employed on the transition metal centers are also indicated within the appropriate sections 
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of the main text. Interestingly, based on benchmarking SCAN and experimental formation energies 

of binary sulfides, Gautam et al.12 concluded that a +U correction with SCAN was not required to 

accurately describe the ground-state properties of CZTS. 

Band gaps 

For quantitative comparisons of calculated band gaps with experiments, a ground-state theory, 

such as DFT, DFT+U, hybrid DFT (e.g., HSE), is not of much utility since the unoccupied virtual 

bands (i.e., conduction bands) are not described accurately. Thus, advanced excited-state methods, 

such as the many-body Green’s function theory (GW),36,37 are often employed for this purpose. 

Notably, GW theory provides a framework to calculate the self-energy of a many-electron system 

via an expansion of the single-particle Green’s function (G) that describes the propagation of an 

electron within a screened Coulombic potential (W). Physically, the GW approximation is 

equivalent to adding a “dynamically screened” Coulomb potential38 to DFT.  

Although self-consistent GW calculations can be performed, prior studies have shown that 

doing a non-self-consistent GW calculation (G0W0)39 as a perturbation to the ground-state one-

electron wavefunctions and eigenvalues obtained from DFT (i.e., DFT+G0W0) often yields 

accurate band gaps even in small-gap semiconductors.40–43 G0W0 calculates a quasiparticle (QP) 

band gap directly comparable to a measured photoemission/inverse photoemission gap. The 

accuracy of G0W0 calculations, however, relies on the quality of the ground-state wavefunctions 

obtained from DFT and the use of a sufficient number of virtual states to obtain a reliable band 

gap.44 Since DFT+U provides a better description of ground-state wavefunctions in open-shell 

systems, DFT+U+G0W0 calculations can furnish accurate predictions of transition-metal oxide 

band gaps.45,46 Thus, based on benchmarking theoretical predictions with experiments, Alidoust 

and Carter10,47 used PBE+U+G0W0 and LDA+U+G0W0 for band-gap calculations in (pure and 
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doped) NiO and CoO, respectively, where the magnitude of U values used for Ni and Co were 

obtained from size-converged electrostatically embedded unrestricted HF calculations.48,49 

Charge transfer barriers 

Charge transport in transition metal oxides is most often best described by using the small polaron 

model.50,51 A small polaron is the combination of a localized carrier (hole or electron) and a 

localized lattice distortion that affects a few surrounding ions (distances less than the lattice 

constant) from the localized carrier.50–54 In the case of (pure, doped, and alloyed) NiO and FeO, as 

modeled by Alidoust and Carter,55,56 and Toroker and Carter,57 respectively, a small hole polaron 

is predicted to form when a hole localizes on an oxygen in NiO (i.e., forming O1- from O2-) and 

via hole localization on an iron in FeO (i.e., forming the stable, half-filled d-shell Fe3+ from Fe2+). 

These are the most stable positions of the hole, as opposed to forming Ni3+ or O-1 in NiO and FeO, 

respectively. Hole polarons can migrate within a lattice from a donor (O1- in NiO and Fe3+ in FeO) 

to an acceptor site (O2- in NiO, Fe2+ in FeO), limited by a barrier 𝛥𝛥𝐺𝐺∗, which can be estimated 

using the Marcus theory of electron transfer (vide infra).58,59 
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Figure S1: Schematic of potential energy surfaces during CT within the framework of Marcus theory.58 

Figure S1 displays a schematic of a parabolic potential energy surface (within the 

framework of Marcus theory) around a donor (D, green curve) site and an acceptor (A, purple) site 

during charge (e.g., hole polaron) transfer in a material. Note that the donor and acceptor states are 

defined by a set of collective nuclear coordinates, qD and qA, respectively, and the free energy 

difference between the two states is given by Δ𝐺𝐺 in Figure S1. If the potential energy surfaces are 

known for the donor and acceptor states, then one can calculate a reorganization energy (𝜆𝜆 in 

Figure S1) as the energy required to distort the lattice from the equilibrium configuration of the 

donor (qD)equil to the equilibrium configuration of the acceptor (qA)equil without the hole (or 

electron) being transferred. The actual CT process can occur under two distinct scenarios:58 i) the 

donor and acceptor nuclei do not move when the charge is transferred, i.e., nuclear and charge 
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motion are decoupled, referred to as the “diabatic” approximation; and ii) both the donor and 

acceptor move during CT, i.e., the nuclei and charge motion are highly coupled, referred to as the 

“adiabatic” approximation. 

In the diabatic CT scenario (dashed and solid green and purple lines in Figure S1), the 

transferring charge has to “jump” from the donor energy surface to the acceptor energy surface at 

the crossing point (qc), i.e., the point of intersection between the green and purple dashed lines in 

Figure S1. In the case of adiabatic CT (solid black curves), the potential energy curves split into 

distinct ground- and excited-state configurations at qc, where the extent of coupling between the 

donor and acceptor energy curves is quantified via the coupling matrix element, 𝑉𝑉𝐴𝐴𝐴𝐴. Note that the 

energy difference between the ground- and excited-state configurations at qc (Δ𝐸𝐸) is twice that of 

the coupling matrix element, i.e., Δ𝐸𝐸 = 2𝑉𝑉𝐴𝐴𝐴𝐴.  

In general, Δ𝐺𝐺∗for CT from the donor to the acceptor (DA), given 𝜆𝜆 and 𝑉𝑉𝐴𝐴𝐴𝐴, can be 

expressed as Δ𝐺𝐺∗ = −𝜆𝜆
4
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1
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2
− 𝑉𝑉𝐴𝐴𝐴𝐴,60 where the CT barrier for AD is Δ𝐺𝐺∗ + Δ𝐺𝐺. Under 

the diabatic approximation, 𝑉𝑉𝐴𝐴𝐴𝐴 ≈ 0, and Δ𝐺𝐺∗ = Δ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~ 𝜆𝜆
4
, which signifies that the barrier can be 

efficiently calculated if the ground-state energy curves of the donor and acceptor states are known 

(computed via robust, self-consistent, ground-state methods). In contrast, under the adiabatic 

approximation �0 < 𝑉𝑉𝐴𝐴𝐴𝐴 ≪
𝜆𝜆
2
�, Δ𝐺𝐺∗ reduces from Δ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by approximately the coupling element, 

i.e., Δ𝐺𝐺∗ = Δ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~ 𝜆𝜆
4
− 𝑉𝑉𝐴𝐴𝐴𝐴,61 necessitating the explicit evaluation of both the ground- and 

excited-state energies at qc. It is difficult to determine a priori if Δ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is substantially different 

from Δ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for a given material. Hence, performing a few representative calculations of 𝑉𝑉𝐴𝐴𝐴𝐴 to 

verify the (a)diabatic nature of CT is recommended.55 
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Following previous theoretical work54,62,63 calculating polaron migration barriers in pure 

and doped TMOs, Alidoust and Carter55,56 and Toroker and Carter57 estimated the diabatic barriers 

(Δ𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ ) in NiO and FeO, respectively, using structurally relaxed unrestricted Hartree-Fock 

(UHF64) calculations on electrostatically embedded clusters. Carved out of rocksalt NiO (FeO) 

periodic crystals, the clusters were capped with Mg effective core potentials (ECPs)65 to 

compensate for missing Ni2+ (Fe2+) ions adjacent to O2- and to account for Pauli repulsion between 

cluster electrons and neighboring core electrons of the +2 ions. The ECP-capped cluster was then 

embedded within an aperiodic point charge array to represent the electrostatic potential arising 

from the surrounding crystal structure.66 The intermediate states were obtained via the linear 

coordinate approximation after optimizing the geometry of the donor and acceptor hole 

configurations.67 

To calculate the adiabatic hole transfer barrier in NiO, Alidoust and Carter55,56 employed 

complete active space self-consistent field (CASSCF) calculations68 to evaluate the excited-state 

energy. Note that a single-determinant, ground-state theory, such as UHF, cannot accurately 

describe the coupled wavefunctions (and the consequent split in energy levels) at the transition 

state. The computationally expensive CASSCF calculations instead includes all possible excited 

state configurations within a subspace (called the active space) in its wavefunction, along with a 

self-consistent optimization of the orbital shapes that give rise to those configurations.  

Lattice disorder 

Lattice disorder, or any order-disorder phase transformation in a given solid, can be described via 

a cluster expansion (CE69) model. A CE is a generalized Ising model70 that describes the total 

energy of a given lattice in terms of atomic occupations over various lattice sites. In practice, CE 
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models are often written as a truncated series of cluster interactions, such as interactions between 

pairs, triplets, etc.71 The truncated series then is fit to an input set of configurations (typically built 

from the supercells of a given structure) and their corresponding energies (calculated via DFT or 

a similar theory). In combination with canonical Monte Carlo (MC) simulations, where the CE 

evaluates the energy during each MC sweep, CE models can be used to estimate the configurational 

entropy of a lattice and have been shown to accurately estimate order-disorder transitions.72–74 

To investigate the origins of disorder within the CZTS structure (in other words, to probe 

the order-disorder transition within CZTS), Yu and Carter11,75 performed MC simulations based 

on a CE model built on a set of PBE+U calculations in CZTS. The U values of Cu, Zn, and Sn 

used in the PBE+U calculations were determined from previous electrostatically embedded 

unrestricted HF calculations.35 To construct the CE, the authors75 considered four different pair 

and triplet interactions. Note that Yu and Carter11,75,76 also added long-range dispersion 

corrections, namely Grimme’s a posteriori D2 correction,77 in all of their PBE+U calculations 

(resulting in a PBE+U+D2 functional) to improve predictions of the lattice constants and the bulk 

modulus.76  
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