Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V2O5•nH2O Xerogel Material

Niya Sa,[†]*^{*} Tiffany L. Kinnibrugh,[#] Hao Wang,[†] Gopalakrishnan Sai Gautam,[§] Karena W. Chapman,[#] John T. Vaughey,[†] Baris Key,[†] Timothy T. Fister,[†] John W. Freeland,[#] Danielle L. Proffit,[†]* Peter J. Chupas,[#] Gerbrand Ceder,[§] Javier G. Bareno,[‡] Ira D. Bloom,[‡] Anthony K. Burrell[†]*

[†]Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439, USA [‡]Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA [#]X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA [§]Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

KEYWORDS: Mg battery, bilayer V2O5, Mg intercalation, pair distribution function (PDF), solid state NMR

TGA analysis: Thermogravimetric analysis (TGA) of the pristine $V_2O_5 \cdot nH_2O$ xerogel was conducted on a Perkin Elmer Pyris Instrument inside of an argon-filled glove box with H_2O and O_2 level less than 1 ppm. The weight change profile was characterized by a steep loss program before 80 °C, followed with a gradual weight loss program with 3 °C /min increase of temperature till 800 °C. Figure S1 showed weight loss profile that is composed of two parts, the first slope observed for weight loss before 150 °C which corresponds to weakly bound water and the second slope corresponds to tightly bound water.

Figure S1. Thermogravimetric analysis (TGA) curves for pristine $V_2O_5 \cdot nH_2O$ xerogel sample. Weight loss corresponding to weakly bond water (T < 150 °C) and tightly bond water (T > 150 °C) is shown.

Figure S2. Pair distribution function (PDF) analysis for xerogel $V_2O_5 \cdot nH_2O$. Structure model is based on $V_2O_5 \cdot nH_2O$ with interstitial species. **(a)**. Double layer structure of xerogel $V_2O_5 \cdot nH_2O$, where red, yellow and blue stand for oxygen, water molecules and vanadium, respectively. **(b)**. Experimental (hollow blue line) and calculated PDF (solid red line) for $V_2O_5 \cdot nH_2O$ xerogel. **(c)**. Calculated partial PDF for Interstitial site-interstitial site, Interstitial site-V, Interstitial site-O, O-O, V-O, V-V over 20 Å.

Figure S3. ¹³C NMR spectra of discharged sample (0 V). black: one pulse experiment, red: ¹H-¹³C cross polarization experiment.

Figure S4: ¹H NMR spectra of a secondary set of charged/discharged sample.

Figure S5. ¹³C NMR spectra of the -0.7 V sample in Figure S4. Black: ¹H-¹³C cross polarization experiment, red: one pulse experiment.

Figure S6. ¹H NMR spectra of pristine V_2O_5 , D_2O treated V_2O_5 and PC treated V_2O_5 .

Figure S7. ²H NMR spectra of D_2O treated V_2O_5

References:

1 Grey, C. P.; Dupre, N., NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries. *Chem. Rev.* **2004**, *104*, 4493-4512.

2 Wang, H.; Senguttuvan, P.; Proffit, D. L.; Pan, B.; Liao, C.; Burrell, A. K.; Vaughey, J. T.; Key, B., Formation of MgO during Chemical magnesiation of Mg-ion battery materials. *ECS Electrochem. Lett.* **2015**, *4*, A90-A93.