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ABSTRACT: Accurate ab initio modeling of surfaces and
interfaces, especially under an applied external potential bias, is
important for describing and characterizing various phenomena
that occur in electronic, catalytic, and energy storage devices.
Leveraging the ability of real-space density functional theory
(DFT) codes to accommodate generic boundary conditions, we
introduce two methods for applying an external potential bias that
can be suitable for modeling surfaces and interfaces. In the first
method, an external constant electric field is applied by modifying
the DFT Hamiltonian via the introduction of an auxiliary linear
potential while solving the electrostatic potential arising in DFT
using a Poisson equation with zero-Neumann boundary con-
ditions. The second method directly enforces the desired external
potential bias by imposing constraints on the electrostatic potential, thereby naturally mimicking experimental conditions. We
describe the underlying DFT governing equations for the two setups within the real-space formalism employing finite-element
discretization. First, we validate the constant electric field setup within real-space finite-element DFT (DFT-FE) with an equivalent
approach using plane-wave DFT (i.e., using periodic boundary conditions) on three representative benchmark systems, namely, La-
terminated Li7La3Zr2O12, GaAs (111), and Al FCC (111) slabs. Subsequently, we present a comprehensive evaluation of the two
setups in terms of the average ground-state properties, such as surface and adsorption energies. Also, we present an approach to
constrain the electrostatic potential over a localised region, which is non-trivial to implement in periodic DFT codes. The methods
developed in our work provide an attractive alternative to plane-wave DFT approaches in applying external potential bias that usually
suffer from the periodic boundary conditions restrictions and poor scalability on parallel computing architectures. Our framework
offers a robust approach for investigating surfaces and interfaces without any underlying assumptions or correction schemes while
allowing for simulations of larger length scales than possible with plane-wave DFT.

1. INTRODUCTION

Ab initio calculations of surfaces and interfaces provide a
rigorous, atomistic-level understanding of the intrinsic proper-
ties that govern their behavior in various applications. Accurate
computation of surface energies, work functions, and the
underlying ground-state electronic structures is critical for
determining chemical reactivity, electronic phenomena, and
catalytic adsorption. Typically, DFT simulations involving
surfaces and interfaces are done using a 2-dimensional slab
model of definite material thickness with a suitable vacuum
layer employing periodic boundary conditions. This allows for
detailed investigations into surface relaxation, surface recon-
struction, defect formation, and diffusion mechanisms, which
are pivotal in applications such as catalysis,1 electronics,2

energy storage,3,4 and corrosion inhibition.5

Plane-wave density functional theory (PW-DFT) is a widely
used approach today for accurate electronic structure
calculations employing pseudopotentials. The popularity
stems from the systematic convergence offered by the plane
wave basis set, which ensures spectral convergence in the
computation of ground-state material properties.6,7 However,
this choice of the basis set restricts the simulation domains to
be periodic. Furthermore, sufficient vacuum sizes or large cell
sizes are required to minimize the interaction between their
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periodic images when computing ground state properties for
molecules, nanoclusters, defective solids, slabs, and interfaces.
Additionally, in the case of interfaces or surfaces with an
intrinsic dipole moment, enforcing periodicity can lead to a
spurious electric field, resulting in incorrect results and
convergence issues.8 To mitigate these effects, larger
symmetric slabs can be employed to eliminate the net internal
dipole moments. However, the requirement for large vacuums
and larger slabs is computationally expensive, and the problem
is compounded further by the inferior scaling of plane wave
codes on modern supercomputing architectures.

To address the computational expense and convergence
issues of surface/interface calculations, several strategies9,10

have been proposed where an auxiliary linear potential is
applied numerically to ensure the periodicity of electronic
fields, often referred to as dipole correction schemes, which
recover the original nature of the problem. Other approaches
include incorporating Coulomb truncation kernels11,12 which
truncate the long-range Coulomb interactions between
periodic images in plane-wave DFT codes. In contrast, real-
space methods such as finite difference methods,13−17 wavelet-
based methods,18−20 or finite-element (FE) methods21−36

naturally accommodate generic boundary conditions and are
systematically improvable while exhibiting excellent scalability
on massively parallel computing architectures. In these
methods, zero-Neumann boundary conditions on the electro-
static potential (i.e., the normal components of potential
gradients are set to zero) can be imposed on the boundary
parallel to the slab surface with an additional constraint
imposed to fix the electrostatic potential reference. Notably, for
neutral slabs, zero-Neumann boundary conditions can
eliminate the need for dipole correction schemes and a large
vacuum, improving accuracy and computational efficiency
using real-space methods.

Beyond analyzing ground-state properties of material
systems involving surfaces and interfaces, such as surface
energies and work of adhesion, it is often necessary to
investigate the other material parameters that control surface
reactivity, diffusion mechanisms, and surface polarizability to
understand key phenomena in various applications. Such
important material properties or parameters can be tuned by
applying an external potential bias across the slab, i.e., by
applying an external electric field. For example, applying an
external potential bias enables the tuning of surface polar-
ization to control ferroelectricity in nanoscale electronics37 and
the manipulation of spin polarization for spintronic applica-
tions.38 Additionally, external bias can regulate surface
adsorption and modify chemical kinetics to enhance catalytic
performance.39,40 In battery systems, electrode||electrolyte
interfaces experience significant electrostatic potential differ-
ences, which can alter ion migration pathways, ultimately
impacting performance and efficiency.41,42 Moreover, electro-
chemical impedance spectroscopy is a commonly used
characterization technique in electrochemical devices that
involves the application of an alternating potential bias across
an interface to study the ionic and electronic transport
mechanisms within the interface or material of interest.43

So far, PW-DFT calculations44−46 have been used to provide
theoretical insights into the effect of applying an external
potential bias, where the bias is typically treated as a constant
external electric field across the material system,44,47−49 which
may not depict what is actually happening in a system. An
alternative approach, based on Green’s functions,50 reformu-

lates the electrostatic problem such that the computational
domain is decoupled from periodic boundary conditions
through an analytical form of Green’s functions for Poisson’s
equation for various boundary conditions. However, this
method is restricted to boundary conditions for which an
explicit analytical form of Green’s function is available. Thus, it
is important to develop strategies to accurately model scenarios
where an external potential bias is applied to a surface or an
interface system, during either device operation or during
characterization. In this work, we focus on developing real-
space strategies for applying an external electrostatic potential
bias at a fixed number of electrons and demonstrate on
materials systems with no net electron transfer. Note that
extensions of real-space frameworks that incorporate constant
chemical potentials, allowing for the number of electrons to
vary (i.e., grand canonical approaches51), are part of ongoing
work.

Here, we leverage the ability of real-space density functional
theory (DFT) methodologies to accommodate generic
boundary conditions to introduce two setups for applying an
external potential bias across a slab system: (a) imposing a
uniform constant external electric field (CEF) and (b) directly
applying a constrained potential difference (CPD). We
introduce both setups using aperiodic boundary conditions
in the DFT electrostatics problem. In the CEF setup, the
external electric field is the tuning parameter that determines
the resulting applied potential difference across the slab, as
commonly done in plane-wave codes.44−46 To achieve a CEF
in real-space DFT, we need to impose a constant external
electric field in the nonperiodic direction of the slab by
modifying the DFT Hamiltonian, which is done by adding a
sawtooth-shaped potential to the Kohn−Sham effective
potential. Note that the linear segment of the sawtooth
potential has a slope corresponding to the magnitude of the
applied electric field. Further, the electrostatic problem
involving the total charge density is solved by imposing zero-
Neumann boundary conditions with a zero mean value
constraint to fix the reference of the electrostatic potential.
In the CPD setup, we directly control the electrostatic
potential near the slab boundaries, providing a more natural
representation of experimental setups in which an explicit
potential bias is applied. In the CPD approach, the underlying
electrostatic problem corresponding to the total charge density
is solved by imposing inhomogeneous Dirichlet boundary
conditions that respect the external potential bias, which
ensures that the potential bias across the slab is maintained
during the self-consistent field iteration employed for solving
the underlying DFT problem. Further, we extend the CPD
approach by localizing the region where the electrostatic
potential is constrained (or the L-CPD approach), which
cannot be trivially implemented in PW-DFT.

We have adopted a finite-element (FE) methodology for
solving the DFT problem in our current work. FE basis sets are
systematically convergent and compactly supported piecewise
polynomial bases that can naturally accommodate generic
boundary conditions. The locality of FE basis sets can exploit
fine-grained parallelism on modern heterogeneous architec-
tures while ensuring excellent scalability on distributed
systems.52,53 Indeed, recent studies35,36,53,54 have demonstra-
ted that FE-based methods significantly outperform plane-wave
approaches for norm-conserving pseudopotential DFT calcu-
lations, particularly for large systems to achieve a given
accuracy of ground-state energy and forces.33,55 The open-
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source code DFT-FE53,54 incorporates these features while
leveraging scalable and efficient solvers for solving the Kohn−
Sham equations. Additionally, the recently developed projector
augmented wave method formalism within the FE framework
(PAW-FE)56 has demonstrated nearly a 10-fold speedup over
existing FE-based norm-conserving pseudopotential methods,
thereby extending the length scales accessible to DFT
computations. In this work, we implement both setups (CEF
and CPD) for applying an external potential bias within the
DFT-FE framework employing norm-conserving pseudopo-
tentials, utilizing the advantages discussed earlier, thereby
establishing a robust framework for large-scale simulations of
surfaces and interfaces under an external potential bias and we
note that extension to PAW-FE is straightforward.

We begin by benchmarking the CEF setup implemented in
DFT-FE with an equivalent approach9,47 used in plane wave
codes. We consider three representative systems for our
benchmarking, namely, La-terminated Li7La3Zr2O12 (LLZO),
GaAs(111), and Al FCC(111) slab, covering a diverse range of
systems from polar to nonpolar and from insulating to metallic,
with applications in semiconductor devices, solid-state
batteries, and catalysis. Subsequently, to examine the differ-
ences between the two setups (CEF vs CPD) in DFT-FE, we
plot the planar average electron density and planar average
bare potential as a function of position along the nonperiodic
direction for the benchmark systems considered. Importantly,
we observe that the bare potential for a given material system
at the ground state is different between the CEF and CPD,
resulting in different ground-state solutions. Finally, we
compare the surface energy of the (111) GaAs slab and La-
terminated LLZO, and the adsorption energy of Na on the
Al(111) surface as a function of the tuning parameters
available in the CEF and CPD setups. Also, we extend a
comparison of the surface energies and dipole moments in the
GaAs (111) surface between the CPD and the L-CPD
approaches.

The remainder of this article is structured as follows: Section
2 discusses the real-space formulation and FE discretization
necessary for solving the Kohn−Sham ground-state problem. A
detailed description of the two methods (and extension to L-
CPD) of applying an external potential bias is presented.
Section 3 presents a comprehensive benchmarking of the CEF
setup against an equivalent approach used in plane-wave codes.
Following this, we demonstrate the differences between CEF
and CPD setups in DFT-FE when applying an external
potential bias across the slab and extend the comparison by
evaluating the surface energy of GaAs(111) and La-terminated
LLZO, as well as the adsorption energy of Na on Al(111).
Finally, we discuss our observations, outline future prospects
arising from this work, and finish with a few concluding
remarks.

2. METHODS
In this section, we outline the governing equations for
determining the ground-state material properties involving
slab models within the real-space formalism employed in this
work. Subsequently, we examine different approaches for
incorporating an external potential bias, detailing the
modifications to the Hamiltonian and the resulting energy
and ionic forces expressions. Finally, we provide an overview of
the FE formulation used in this work to compute the ground-
state properties of slabs under an applied potential bias.

2.1. Governing Equations and Force Expression in
DFT-FE. The ground-state properties of a slab comprising Na
nuclei and Ne electrons in a representative supercell within the
norm-conserving pseudopotential formalism are governed by
the following Kohn−Sham density functional theory (DFT)
energy functional57,58:

E T E E ER, minn
a

( )
s xc el psp

n p

[{ } { }] = { + + + }
{ } (1)

where {ψn} denotes the single-electron wave functions
satisfying the orthonormality condition ⟨ψi|ψj⟩ = δij with 1 ≤
n ≤ N where N N

2
e , and {Ra} signifies the position vectors of

the Na nuclei. We note that χ(Ωp) denotes an appropriate
function space in which the single-electron wave functions lie,
with Ωp representing the 2D periodic slab domain. We focus
here on the spin-unpolarized DFT formulation for clarity and
notational convenience, while the extension to the spin-
polarized framework is straightforward.

The term Ts in eq 1 represents the kinetic energy of the
noninteracting electrons, while Exc represents the exchange-
correlation energy that accounts for the quantum mechanical
many-body effects, and is given by
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x x
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2
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where the generalized gradient approximation58−60 (GGA) has
been adopted for the exchange-correlation contribution.
Further, the electron density (ρ(x)) and its gradient (∇ρ(x))
in eq 2 are computed as,
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with x denoting the spatial coordinate, and f n is the occupation
number corresponding to the electronic wave function indexed
by ‘n’ in the above. Furthermore, Eel in eq 1 represents the
classical electrostatic energy computed as
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(4)

where (x) denotes the trial function for the electrostatic
potential due to the total charge density (ρ(x) + b(x)) and
belongs to a suitable function space κ(Ωp). Additionally, Eself

a in
eq 4 represents the self-energy associated with an atom-
centered smeared charge density bsm

a (x). Eself
a arises from

introducing the atom-centered smeared charges in the local
real-space electrostatics reformulation, which leads to an
additional atom-centered potential, Vsm

a (x − Ra) (see eq 17
in our previous work54). Moreover, the electrostatic potential
ϕ(x) generated by the total charge density (ρ(x) + b(x)),
where b(x) = ∑absm

a (x − Ra), is obtained by solving the
following Poisson’s equation,
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bx x x
1

4
( ) ( ) ( )2 = +

(5)

that corresponds to the Euler−Lagrange equation associated
with the maximization problem in eq 4. Finally, Epsp[{ψn},
{Ra}] in eq 1 represents the pseudopotential energy
contribution, which is written as the sum of local and nonlocal
contributions, i.e., Epsp[{ψn}, {Ra}] = Eloc[ρ(x)] + Enloc[{ψn},
{Ra}], where the local pseudopotential, Eloc, is expressed as

E V Vx x x x x( ) ( ( ) ( )) ( )dloc loc sm
p

[ ] =
(6)

In the above equation, Vloc(x) is the sum of atom-dependent
local pseudopotentials, i.e., Vloc(x) = ∑aVloc

a (x − Ra), while
Vsm(x) = ∑aVsm

a (x − Ra). Since the electrostatic energy
computed from eq 4 involves the electrostatic potential ϕ(x)
due to the electron charge and smeared charge density, i.e.,
ρ(x) + b(x), the energy contribution given by Eloc[ρ(x)] term
not only includes the contribution from Vloc(x) but is adjusted
to exclude the contribution of Vsm(x) arising from the smeared
charge density b(x). Additionally, the nonlocal pseudopotential
energy contribution, Enloc, for optimized norm-conserving (or
ONCV) pseuodpotentials61 is given by

E

f V
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x x y y y x
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2 ( ) ( , ) ( )d d
n
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n n n n
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p

[{ } { }] =
*

(7)

where the action of Vnloc(x, y) on electronic wave function is
given by

V

p D p

x y y y

x R y R y y

( , ) ( )d

( ) ( ) ( )d

n

a

N
a a a a a

n
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a
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The composite index β = {n, l, m} in eq 8 is such that l and m
denote the orbital and magnetic angular momentum indices,
respectively. Furthermore, pβ

a(x − Ra) indicates the atom-
centered projector of index β, while Dβ

a represents the
pseudopotential coupling coefficients. Finally, the problem of
determining the ground-state properties for given positions of
nuclei ({Ra}) is determined by solving the following variational
problem,
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The Euler−Lagrange equation corresponding to the
minimization of the energy functional in eq 9 subject to the
orthonormality constraint on the single-electron wave
functions (∫ ψi*(x)ψj(x)dx = δij), leads to the Hermitian
eigenvalue problem i i i= that needs to be solved for the
smallest N ≥ Ne/2 eigenpairs {εi, ψi} of the Hamiltonian
operator . In turn, is decomposed as loc nloc= + ,
where loc is defined to be,
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with (x) ≔ ϕ(x) + Vloc(x) − Vsm(x), henceforth referred to
as the total electrostatic potential, which includes the
electron−electron and electron−nuclear interactions. Addi-
tionally, the action of nloc on wave function ψn(x) is defined
as

V x y y y( , ) ( )dn
a

N
a

nnloc nloc

a

(11)

When dealing with periodic crystals, 2D slabs or surfaces, it
is computationally efficient to invoke Bloch’s theorem58,62

along the periodic directions, and instead of solving the
problem on large periodic supercells, we solve the problem on
smaller unit cells with periodic boundary conditions. Using
Bloch’s theorem, the electronic wave function can be expressed
as ψnk(x) = eik·xunk(x), where i 1= and unk(x) is a lattice-
periodic function satisfying unk(x + Lr) = unk(x) for all
reciprocal lattice vectors k in the first Brillouin zone and for all
lattice vectors Lr in the periodic directions. To this end, the
governing equations involving Bloch wave functions to be
solved for determining the ground-state properties are given as
follows:

u u

V b bx R x x x

with
1

4
( ),

1
4

( ) ( ) ( )

k
k k k

k k k
n n n

a a a

loc nloc

2
sm sm

2

= +

= = +

(12)

where k
loc and the action of k

nloc on a wave function are
given by eq 13

where denotes the volume average of the integral over the
first Brillouin zone (BZ) corresponding to the unit cell Ωp. A
detailed discussion on computing ion forces and cell stresses
can be found in our previous work.54,63 For the sake of
completeness, we mention here the expressions for the ionic
force in the norm-conserving pseudopotential formulation:
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2.2. Applying an External Potential Bias. First, we
consider the effect of a constant external electric field (or
CEF), which is analogous to the sawtooth method with dipole
correction employed in plane-wave codes.9,47 Second, we
examine the case where the classical electrostatic potential
(ϕ(x)) conforms to the external potential bias through the
boundary conditions imposed on ϕ(x) in the Poisson equation
(eq 5), termed the constrained potential difference (or CPD)
setup.
2.2.1. CEF Setup. The typical approach to imposing an

external electric field on slabs is to employ a sawtooth
potential,47 which is the method of choice for slabs in
Quantum Espresso (QE64) and one of the approaches used in
our work as well. An alternative approach to applying a
constant electric field is by introducing a dipole sheet in the
vacuum region.10,44 In the current CEF setup, the effective
potential (Veff(x)) in eq 10 is modified to take the form,

i
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jjjj
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zzzzV

E
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x
x x x x( )

( )
( ), ( ) ( ) ( )eff

xc
app= [ ] + +

(15)

where Vapp(x) is the linear periodic potential across the
material system as indicated in Figure 1. The slope of Vapp

dictates the magnitude of the electric field,
V

z

d

d
app= and

ensures a straightforward benchmarking with plane-wave
codes. We design the profile of Vapp(x) to be a sawtooth
function, similar to plane-wave codes, with the maximum and
the minimum values located close to the simulation cell
boundaries, as shown in Figure 1. Additionally, the sawtooth
form acts as a constraining potential, preventing electron
density leakage into the low-potential regions, allowing for
better self-consistent field convergence, especially at higher

magnitudes of . Unlike the plane-wave basis, the electrostatic
potential (ϕ(x)) in DFT-FE need not be fully periodic, and we
impose semiperiodic boundary conditions on ϕ(x) to simulate
neutral slabs. Specifically, as displayed in Figure 1, we impose
periodic boundary conditions in the x, y-planar directions and
a zero-Neumann boundary condition on the boundaries
parallel to the slab surface while solving for ϕ(x) using the
Poisson equation (see eq 5). Additionally, we apply a zero
mean-value constraint, ∫ Ω dp

ϕ(x)dx = 0, to fix the reference
potential and remove the arbitrary constant offset.

Finally, we summarize the governing equation and boundary
conditions to determine ϕ(x) in the CEF setup as
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The inclusion of Vapp(x) requires the energy functional in eq 9
to be modified as
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Additionally, the ionic forces are modified as

F F F F Fa a a a a
loc nloc nloc app= + + * + (18)

where Floc
a , Fnloc

a are defined in eq 14, * denotes the complex
conjugate and F Va

app app v= , with a
v denoting the

valence charge of atom “a”.
2.2.2. CPD Setup. The natural approach to applying an

external potential bias is to impose constraints on the total
electrostatic potential ( (x)) so that the desired potential
difference is maintained. In contrast to the CEF setup, where
δVapp is controlled via the value of the constant electric field,
this method directly enforces the total electrostatic potential
difference across the slab, δ , as the boundary condition. Since
δ corresponds directly to the controlling parameters used in
electrochemical and surface science measurements, this
approach provides a more direct link to the experimental setup.

To implement CPD, the solution of the electrostatic
variational problem in eq 4 should satisfy the boundary
conditions shown in Figure 2. Furthermore, the CPD can be
modified to localize the Ω1 region as shown in the top panel of
Figure 3, which we refer to as the locally constrained potential
difference (L-CPD) setup. The bottom panel of Figure 3
highlights the difference in the Ω1 region between the two
setups. Finally, we can summarize the governing equation and
boundary conditions for computing the electrostatic potential
(ϕ(x)) in the CPD and the L-CPD setup as

Figure 1. CEF: The boundary conditions for the electrostatic
potential (ϕ(x)) are periodic along the x and y directions. Γyd0

, Γy1,
Γx d0

(not shown), and Γx d1
(not shown) denote the periodic boundaries.

Zero-Neumann conditions are applied on the nonperiodic boundaries
Γz d0

, Γz d1
. The constant electric field is applied by introducing the

sawtooth potential Vapp. The electric field ( ) is determined as
Z V= ).
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Notably, the Kohn−Sham energy functional remains
unchanged from eq 9, thereby the governing equation and
the expression for ionic forces are exactly the same as in eqs 12
and14, respectively. We note that the electrostatic screening
method,50 designed for use with plane-wave codes, is in a
similar spirit. However, it relies on Green’s functions of the
Poisson equation for various boundary conditions, restricting

the applicability to only those cases where analytical solutions
are available.

2.3. FE Discretization. We discretize the governing
equation in eq 12 by employing the FE basis,65,66 which
comprises 0-continuous piecewise Lagrange polynomials
interpolated over Gauss−Lobatto−Legandre nodal points. To
this end, the FE representation of the various electronic fields
in eq 12 are given by,

u N u Nx x x x( ) ( ) , ( ) ( )k kn
h

I

M

I
h p

n
I h

I

M

I
h p I, ,

el
el= =

(20)

where unk
I , ϕI represent the FE discretized fields, while NI

h,p(x),
NI

h,pel(x) are the strictly local Lagrange polynomials of degrees
p, pel, respectively. The resulting discretized eigenvalue
problem Hkunk = εn,k

h Munk is a nonlinear generalized eigenvalue
problem where Hk is the FE-discretized Hamiltonian and M
represents the FE-basis overlap matrix. Furthermore, to
determine the electrostatic potential (ϕh(x)), the FE-
discretized Poisson equation Kϕ = c is solved with appropriate
boundary conditions, where the entries of K are KIJ =
∫ Ω dp

∇NI
h,pel(x)·∇NJ

h,pel(x)dx and cI = ∫ Ω dp
NI

h,pel(x)(ρ(x) +
b(x))dx. A detailed discussion on the eigensolver, self-
consistent-field iteration related mixing strategies, and the
efficient solution strategies that leverage the sparsity of the FE
basis are discussed in our previous works.35,52,54,67

2.4. Computational Details. The two setups for applying
an external potential bias (CEF and CPD), as discussed in the
previous subsections, were implemented within the DFT-FE
framework employing norm-conserving pseudopotentials. In
our calculations, we employed GGA59,60 for the exchange-
correlation functional, specifically utilizing the Perdew−
Burke−Ernzerhof (PBE) form,60 as implemented in the
libxc68 library. Furthermore, the plane-wave calculations for
some of the validation studies were performed using QE, using
the dipfield option to enable dipole correction and the tefield
option to add the sawtooth potential. The ONCV
pseudopotentials61 used for these simulations were from the
pseudodojo69 and SPMS70 repositories (refer to Supporting
Information, Section S1 for more details). The plane-wave
discretization parameter, Ecut for QE, was selected such that the
discretization error with respect to a refined calculation (Ecut =
100 Eh) is of (10 ) E5

atom
h for DFT ground-state energy,

(10 ) E5
bohr

h for ionic forces and (10 ) E6
bohr

h
3 for unit-cell

stresses, wherever applicable. Similarly, the discretization
parameters in DFT-FE are the FE interpolating polynomial
degree ‘p’ and mesh size around the atom ‘h’. These were
chosen such that a discretization error of (10 ) E5

atom
h for

ground-state energy, (10 ) E5
bohr

h for ionic forces and

(10 ) E6
bohr

h
3 was achieved with reference to a refined

calculation (Ecut = 100 Eh) in QE for each bulk system. For
the Brillouin zone integration, we employ Monkhorst−Pack
(MP) grids71 to ensure systematic convergence of electronic
properties. The k-point sampling rule for Brillouin zone
integration was chosen so that the errors from successive
refined samplings are higher order relative to the discretization
errors incurred, ensuring the systematic convergence of
electronic properties.

Figure 2. CPD: The boundary conditions for the total electrostatic
potential ( (x)) is periodic along the x and y directions. Γy d0

, Γy1,
Γx d0

(not shown), and Γx d1
(not shown) denote the periodic boundaries.

ZA and ZB denote the interface between the vacuum and metal
conductors. Lw denotes the distance between the surface and the
metal conductors. Furthermore, (x) is constrained in the region of
metal conductors, as shown in the shaded region, ensuring the electric
field in the conductor region is zero.

Figure 3. Top panel: L-CPD: The boundary conditions for the total
electrostatic potential ( (x)) is periodic along the periodic
boundaries Γy d0

, Γy1, Γx d0
(not shown), and Γx d1

(not shown). ZA and
ZB denote the interface between the vacuum and metal conductors.
Lw denotes the distance between the surface and metal conductors.
(x) is constrained in the region of metal conductors, as shown in the
shaded region, ensuring the electric field in the conductor is zero.
Bottom panel: Comparison of (a) CPD and (b) L-CPD setups when
viewed along the z axis for GaAs (Ga: red; As: green). The region in
blue depicts the region on the surface where is constrained to be
Vapp. ‘a’ indicates the length scale of the region where is applied in
the L-CPD setup.
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3. RESULTS
In this section, we begin by benchmarking the CEF setup
implemented in DFT-FE against an equivalent setup9,47 in QE.
We compare the dipole moment, free energy, and ionic forces
with various magnitudes of constant external electric fields and
compute the dielectric response of the three systems
considered in this work. Following this validation study for
the CEF setup, we compare the CEF and the CPD setups by
analyzing the difference in the ground state solutions of
electron density (ρ(x)) and bare potential (Vbare(x)). Finally,
we compare the influence of external potential bias in the two
setups on ground-state properties, namely, surface and
adsorption energies.

The systems considered in this work, as showcased in Figure
4, are (a) La-terminated LLZO slab, identified as one of the

favorable terminations in a previous study,72 which consists of
12 formula units of Li7La3Zr2O12. LLZO is an insulating
system and has applications as a solid electrolyte in lithium-
based batteries, and we employ Γ-point sampling for Brillouin
zone integration. (b) GaAs (111) slab − consists of four
alternating layers of Ga and As atoms, comprising 24 atoms.
The slab is polar with Ga and As terminations on opposite
surfaces. The bulk crystal structure was obtained from the
Materials Project database,73 and is well-known to be a

semiconducting material with applications in electronic
devices. For Brillouin zone integration, we used a 10 × 10 ×
1 Monkhorst−Pack grid. (c) Al (111) slab − comprising four
layers of the FCC structure with a total of 32 Al atoms. We
used the bulk geometry of this metallic system from the
Materials Project database.73 We use a 12 × 12 × 1
Monkhorst−Pack grid for Brillouin zone integration. As a
sample system to model a simple adsorption process, we
evaluated the adsorption energy of Na on Al (111). Note that
we place the adsorbed Na at a distance of 5 bohr “above” the
“top” layer of Al atoms in the (111) slab (see panel d in Figure
4). We limit the maximum external electric field to 0.2 V/Å for
the LLZO slab and 0.15 V/Å for the GaAs slab, where these
limits are determined based on the bulk calculated band gap
and the slab thickness to ensure there is no dielectric
breakdown.

3.1. Validation of the CEF Setup. In this subsection, we
benchmark the CEF setup implemented in DFT-FE as
described in Section 2.2.1 with that of the constant electric
field setup9,47 used in QE. For various magnitudes of external
electric field , we compare the DFT internal energy, ionic
forces, and dipole moments between the two codes. The dipole
moment (μ) is computed relative to the center of the
simulation domain as μz = ∫ Ω dp

(b(x) + ρ(x))zdx, where z
represents the position along the nonperiodic axis. We follow
the convention that electron density (ρ(x)) is positive while
the nuclear charge density (b(x)) is negative. The internal
energy and forces are computed as per eqs 17 and 18,
respectively.

As discussed in Section 2.2.1, referring to eq 16, the
electrostatic problem for the total charge density in the CEF
setup is solved using Neumann boundary conditions on the
nonperiodic boundaries, with an additional zero-mean value
constraint to fix the electrostatic potential reference. is
included in the DFT Hamiltonian using the auxiliary potential,
Vapp. In contrast, periodic boundary conditions are used in the
QE when computing the electrostatic potential. However, a
nonzero dipole moment in the system results in artificial
electric fields in QE and is mitigated using a dipole correction
scheme9 in the course of the self-consistent-field iteration. The
potential corresponding to the constant external electric field is
of sawtooth form in both DFT-FE and QE, with maximum and

Figure 4. Systems considered− (a) La-terminated LLZO (Li: blue
spheres, La: yellow, Zr: green, O: red), (b) GaAs (111) (Ga: red, As:
green), (c) Al (111), and (d) Na adsorbed on Al (111) (Al: blue, Na:
yellow). The locations ZA and ZB denote the metal-vacuum interfaces
for the CPD setup. Furthermore, the external potential bias δV across
ZB − ZA is δVapp in the CEF setup and δ in the CPD setup.

Figure 5. Dielectric response comparison of CEF in DFT-FE (triangles) against sawtooth potential with a dipole correction in QE (squares). The
plots show the dipole moment (μ) in units of debye (D) as a function of applied external field ( ) in V/Å for (a) La-terminated LLZO, (b) GaAs
(111), and (c) Al (111). The plots also highlight the dipole moment at zero external electric field.
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minimum values positioned at 0.1 fractional units from the
simulation boundaries.

Figure 5 compares the dielectric response of CEF
implemented in DFT-FE, against the setup in QE for (a) La-
terminated LLZO, (b) GaAs (111), and (c) Al (111) slabs.
The slope of the dipole moment against the external electric
field quantifies the material’s polarization ( z = ). Table 1

compiles the calculated dipole moments (μ) for all systems at
zero external electric field ( 0= ) with DFT-FE and QE. For
the Al (111) slab, the presence of inversion symmetry results in
a nearly vanishing dipole moment at 0= . In contrast, for the
La-terminated LLZO and GaAs (111) slabs, nonzero dipole
moments of 1.57 and 1.47 D, respectively, are observed. These
nonzero dipole moments highlight the importance of boundary
conditions imposed: the presence of a large nonzero dipole
moment suggests that if short circuit boundary conditions (i.e.,
periodic or homogeneous Dirichlet) were imposed on the total
electrostatic potential ( (x)), as would be the case in the CPD
setup, the resulting ground-state obtained would be different.
Hence, we emphasize that by imposing zero-Neumann
boundary conditions (or open circuit boundary conditions)
for slabs, we ensure that the electrostatic potential can adjust
naturally, leading to a physically accurate description of the
ground state.

Furthermore, from Tables S2−S4 in Section S2 of the
Supporting Information, we observe a difference of

(10 ) E6
atom

h in free energy, (10 ) E5
bohr

h in ionic forces and

(10 ) D3 in dipole moment between DFT-FE and QE. The
close agreement in ground-state properties leads to excellent
consistency in polarizability (αz) between DFT-FE and QE, as
shown in Table 1, suggesting the equivalency of both
approaches in implementing a CEF. Having validated the
CEF setup, we next compare this setup with the CPD setup, a
more natural way of applying an external potential difference.
We considered the same representative benchmark systems for
the study.

3.2. Comparison between CEF and CPD Setups. In this
section, we compare CEF and CPD setups of applying an

external potential bias by analyzing planar average electron
density (ρ0(z)) and planar average bare potential (Vbare

0 (z)),
where Vbare(x) is defined as Vbare(x) = ̃(x) + Vapp(x) with
(x) = ϕ(x) + (Vloc(x) − Vself(x)) denoting the total
electrostatic potential due to electron and nuclear charge
density. Specifically, ρ0(z) and Vbare

0 (z) are computed as
follows,

z x y V z
A

V x yx x( ) ( )d d , ( )
1

( )d d
S z S

0
bare
0

bare
z z

= =

(21)

where Sz denotes the planar surface within the simulation
domain located at position z along the nonperiodic axis, while
Az corresponds to the area of Sz. Note that Vapp(x) denotes the
applied potential arising due to the constant electric fields
across the slab. As discussed in Section 2.2.1, CEF setup
introduces Vapp as a sawtooth potential with slope across
the slab. In contrast, the CPD setup (see Section 2.2.2)
imposes the external potential bias as a constraint on the
electrostatic potential ( ) at a distance of Lw from the slab
surface (see Figure 2), while Vapp = 0 throughout the
simulation domain. We position the metal-vacuum interface
at Lw = 10 bohr from the slab’s surface to provide a sufficiently
thick vacuum region that minimizes electron density
penetration into the conductor, since the atomic valence
density, as obtained from the pseudopotential file,69,70 remains
below 5 10 6 e

bohr3× at Lw = 10 bohr. Table 2 shows the
external potential bias imposed for the various systems
considered, and this corresponds to an electric field of

0.1 V
Å

= for La-terminated LLZO and GaAs (111) and

0.15 V
Å

= for Al (111) with and without Na adsorbed in the
CEF setup.

Figures 6 and 7 show the plot of the difference in the
ground-state planar average electron density (Δρ0(z) =
ρ0,CEF(z) − ρ0,CPD(z)) and planar average bare potential
(ΔVbare

0 (z) = Vbare
0, CEF(z) − Vbare

0, CPD(z)). Additionally, Table 2
compares the differences in dipole moments (μ), free energies
(ΔE), and ionic forces (ΔF) between the two setups studied in
this work. For the case of Al (111) slab, with or without Na
adsorbed, the intrinsic metallic screening results in negligible
difference in Vbare within the slab region between the two
setups (Figure 6), while a similarly strong internal screening is
also observed in GaAs (111) slab, where no significant
variation in Vbare is observed within the slab between the two
setups. In contrast, the insulating La-terminated LLZO slab
shows a significant difference in Vbare between the two setups
within the slab region (Figure 7).

As discussed earlier in this subsection, the potential bias is
applied such that the potential at ZA is higher than that of ZB

Table 1. Comparison of Polarization (αz) and Dipole
Moment (μ) at Zero External Electric Field ( 0.0= ) for
the Benchmark Systems

αz (in bohr3) μ at 0= (in D)

system QE DFT-FE QE DFT-FE

La-terminated
LLZO

1422.19 1422.27 1.5764 1.5756

GaAs (111) 357.89 357.92 1.4689 1.4713
Al (111) 318.56 318.62 1.95 × 10−5 1.98 × 10−5

Table 2. Comparison of δVbare
0 Compared to the Target Value, Dipole Moments (μ), Differences in Free Energies (ΔE), and

Ionic Forces (ΔF) between the CEF and CPD Setups for the Benchmark Systems Considered

target δV (inE
e
h) δVbare

0 (inE
e
h) μ (in D)

system CEF CPD CEF CPD ΔE (in E
atom

h ) ΔF (in E
bohr

h )

La-terminated LLZO −0.143 −0.072 −0.143 8.2 19.39 3.51 × 10−5 4.04 × 10−3

GaAs (111) −0.072 −0.008 −0.072 3.3 8.64 2.22 × 10−4 7.78 × 10−4
Al (111) −0.099 −0.040 −0.099 2.43 6.08 1.42 × 10−4 9.73 × 10−5

Al (111) + Na −0.113 −0.021 −0.113 5.5 13.83 3.81 × 10−4 2.6 × 10−3
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(see Figures 1 and 2). Consequently, we observe the electron
density, and hence the dipole moment (μ), to shift toward ZB.
Furthermore, μ values in Table 2 indicate that the shifts in μ
for the CPD setup are greater than CEF, which is due to the
fact that the CPD setup precisely maintains the target potential
bias, while δVbare

0 is lower in the CEF setup. The δVbare
0 being

lower than the target value in the CEF setup is expected since
δVapp(≠δVbare

0 ) is obtained via the electric field , which is the
controlling parameter. On the other hand, δ (=δVbare

0 ) is the
controlling parameter in the CPD setup. As a consequence, we
treat the control parameters, namely or δVapp in CEF and
δVbare

0 or δ in CPD, for each setup separately, and emphasize
that for experimental setups where the total electrostatic
potential ( ) across the surface or interface is controlled, the
CPD setup is a natural choice in the modeling strategy. In the

next subsection, we present the surface energies and adsorption
energies using both setups.

3.3. Surface and Adsorption Energies: CEF vs CPD. In
this section, we examine the relaxed surface energies of the La-
terminated LLZO surface and GaAs (111) surface at various
external potential biases. Furthermore, we also investigate the
effect of external potential bias on the adsorption energy of Na
on the Al (111) surface. We compare the surface energies (γ)
and adsorption energies (Eads) obtained between the two
setups, CEF and CPD. All relaxed structures are obtained using
the LBFGS algorithm until the atomic forces are below
4 10 E4

bohr
h× , ensuring well-converged structures for subse-

quent analyses.
3.3.1. Comparison of Surface Energies. The surface energy

( γ ) i n J / m 2 i s c o m p u t e d f r o m D F T a s

Figure 6. Comparison of CEF against CPD. The shaded region depicts the region of the slab. The plot on the left shows Δρ0(z) with respect to the
z-coordinate in fractional units, while the plot on the right shows ΔVbare

0 (z) with respect to the z-coordinate in fractional units. We offset Vbare
0 (z)

such that Vbare
0 (0.5) = 0, aligning the reference for both potentials.
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= , where A denotes the

surface area in m2. Eslab(δV) and Ebulk are the DFT total
energies of the relaxed slab and bulk structures, with N

Nbulk

indicating the ratio of the number of formula units present in
the slab to the number of formula units in the bulk unit cell. In
the CEF setup, the potential bias is such that δVapp = δV, while
for the CPD setup, the total electrostatic potential difference
satisfies δ = δV (see Figures 1 and 2).

Figure 8 compares the surface energies (γ) and dipole
moments (μ) for the La-terminated LLZO and GaAs (111)

slabs. Note that each panel in Figure 8 shows the control
parameter δVapp (bottom x-axis) for CEF and δ (top x-axis)
for CPD separately. From Figure 8a for La-terminated LLZO,
we observe that the surface energy of CPD is consistently
lower than CEF. Moreover, the difference in surface energies
increases with increasing magnitude of potential difference,
with a maximum difference of 0.049 J/m2 at a potential
difference (δVapp) of −0.178 Eh/e. A similar trend is observed
in Figure 8b for the GaAs (111) slab, where the surface energy
computed in the CPD setup is consistently lower than CEF,
with the maximum difference in γ of 0.03 J/m2. The minimum
difference in γ between the two setups occurs at a positive bias

Figure 7. La-terminated LLZO slab. Comparison of CEF against CPD. The shaded region depicts the region of the slab. The plot on the left
shows Δρ0(z) with respect to the z-coordinate in fractional units, while the plot on the right shows ΔVbare

0 (z) with respect to the z-coordinate in
fractional units. We offset Vbare

0 (z) such that Vbare
0 (0.5) = 0, aligning the reference for both potentials.

Figure 8. Comparison of surface energy (in J/m2 and dipole moment (in debye) between CEF and CPD setups. The systems considered are (a)
La-terminated LLZO (top row) and (b) GaAs (111) slab (bottom row). The control parameters, δVapp (black) for CEF and δ (blue) for CPD
are shown as separate x-axes.
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of 0.018 Eh/e for GaAs (111), while the minimum difference in
γ for LLZO occurs at zero bias. Additionally, for both the
LLZO and GaAs, we observe the variation of dipole moment
(μ) of relaxed structures in the CPD setup to exhibit a steeper
variation with applied bias than the CEF. The steeper variation
of μ in CPD is in line with our previous observation of a larger
dipole shift in the CPD setup, as described in Section 3.2. The
differences observed in γ and μ between the two setups
indicate fundamental differences in interpreting an applied
potential bias across a system and the importance of the
different control parameters involved.

To demonstrate the differences in surface energies obtained
with the L-CPD setup against the CPD setup, we compare the
surface energies of the 2 × 2 × 1 supercell of the GaAs slab as a
function of the applied potential (δ ), as shown in Figure 9.
Importantly, we observe that the CPD setup always has lower
surface energy, and the variation of dipole moment is steeper
in the CPD setup than in the L-CPD setup. These trends are
consistent with the fact that the potential is applied over a
larger surface area in the CPD setup compared to the L-CPD
approach, which allows for a larger modification of the
underlying electronic structure in CPD versus L-CPD,
resulting in a lowering of the surface energy and a larger
change in the dipole moment. Additionally, we observe that
the trends in surface energy and dipole moment corresponding
to the L-CPD setup lie between the CEF and CPD setups.
3.3.1.1. Adsorption Energy. The adsorption energy (Eads) of

Na on Al (111) surface is computed as Eads(δV) = [Eslab
Al+Na(δV)

− Eslab
Al (δV) − ENa], where Eslab

Al+Na(δV) denotes the DFT
internal energy of Na atom on Al (111) slab and Eslab

Al (δV)

denotes the internal energy of Al (111) slab at external
potential bias δV. ENa is the internal energy of a single Na atom
in a vacuum without any potential bias. We ensure that the
locations (ZA and ZB) of the metal-vacuum interface for both
Na on the Al (111) slab and the standalone Al (111) slab are
the same, with ΔZ = ZA − ZB = 33.8 bohr.

Figure 10 compares the adsorption energy (Eads) and dipole
moments (μ) of the relaxed structures of Na adsorbed on Al
(111) and Al (111) slabs for both setups. Similar to the surface
energy plots (Figure 8), the panels in Figure 10 show the
control parameter δVapp (bottom x-axis) for CEF and the

control parameter δ (top x-axis) for CPD separately. From
Figure 10, we observe that the adsorption is favourable at
negative potential biases in both setups, which can be
attributed to Na being near the ZA interface and adsorbs on
the Al by partial electron transfer (see Figure 4) to the Al slab.
Under a positive bias, the electron density is drawn toward the
Na atom, inhibiting further transfer of electrons and thereby
weakening the ability of Na to get adsorbed. In contrast, a
negative bias redistributes electron density away from the Na
site, promoting charge transfer and strengthening Na
adsorption. Additionally, from Figure 10, we observe that the
change in Na adsorption energy is more sensitive to the
applied bias in the CPD setup than in the CEF setup. Similarly,
we observe a steeper variation in the μ of relaxed structures
versus applied bias in the CPD setup compared to that in CEF,
in agreement with our observation in Section 3.2.

Figure 9. Comparison of surface energy (in J/m2) and dipole moment (in debye) between CPD and L-CPD setups in a 2 × 2 × 1 GaAs (111)
slab. Since a 2 × 2 × 1 supercell is considered, the dipole moment is 4× that in Figure 8.

Figure 10. Comparison of adsorption energy (in eV) and dipole moment (in debye) between CEF and CPD. The adsorption energy of Na on the
Al (111) surface is computed along with the dipole moment of the relaxed Al (111) slab at various external potential biases. The control
parameters δVapp (black) for CEF and δ (blue) for CPD are shown as separate x-axes.
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4. PERSPECTIVES AND CONCLUDING REMARKS
Accurate and efficient first-principles modeling of surfaces and
interfaces is essential for gaining theoretical insights into
essential processes such as charge transfer, reaction kinetics,
material stability, and polarization, which are highly important
to understand and optimize in applications such as catalysis,
batteries, fuel cells, sensors, and electronics. While PW-DFT
has long been the preferred method for first-principles
simulations, the inherent restriction in plane-wave method-
ologies to impose periodic boundary conditions leads to
undesirable consequences such as spurious image−image
interactions and the emergence of artificial electric fields in
the case of systems with a net dipole. Moreover, plane-wave-
based codes exhibit poor scalability on multinode CPU-GPU
architectures, restricting the system sizes that can be handled.
In contrast, real-space FE methods employed in this work can
accommodate generic boundary conditions and have demon-
strated an exceptional ability to scale on massively parallel
supercomputing architectures across the world. The ability of
DFT-FE to efficiently handle large systems and accommodate
generic boundary conditions presents new opportunities for
modeling surfaces and interfaces with minimal approximations,
which has been leveraged in this work for modeling surfaces
and interfaces.

The control of external parameters, such as potential bias,
solvation effects, and their combination, plays a critical role in
tailoring the properties of slabs and interfaces. PW-DFT
calculations using a constant electric field44,45,47 have provided
insights on controlling properties such as surface diffusion,
polarization, and ferroelectricity. Additionally, the effective
screening medium (ESM) method50 in PW-DFT decouples
the periodicity of the electrostatic potential by analytically
solving for the electrostatic potential using the Green's
function approach with nonperiodic boundary conditions.
This method provides flexibility in modeling surfaces and
interfaces by introducing a generic framework to control
potential bias, solvation effects, or their combination. However,
when employed in conjunction with PW-DFT, the ESM
method is suited for those problems with boundary conditions
whose Green's function are readily available and further
assumes that the mean field effective potential is short-ranged,
which is not necessarily true when exact exchange74 or van der
Waals75 functionals are employed. Consequently, employing
semiperiodic boundary conditions is essential for the accurate
modeling of surfaces and interfaces without any spurious
periodic interactions in the presence of a potential bias.

Addressing the above limitations and to model larger-scale
systems involving surfaces and interfaces, we implement in
DFT-FE two setups of applying an external potential bias: (i)
constant electric field (CEF) and (ii) constrained potential
difference (CPD). These setups, in contrast to the NEGF
(nonequilibrium Green’s function)76 formulation, ensure that
the electrons are in the ground state and the electronic current
is negligible. We benchmark and validate the CEF setup with
the constant electric field setup in QE by comparing ground-
state properties such as internal energy, ion forces, and dipole
moment. We observe an excellent agreement in the ground-
state properties for the benchmark systems considered, namely,
LLZO, GaAs, and Al.

In the CEF setup, a constant electric field ( ) is applied
along the nonperiodic direction in DFT-FE. The DFT
Hamiltonian is modified by introducing an auxiliary linear

potential, Vapp(x), such that the slope of this linear potential
equals . Furthermore, the electrostatic potential arising
from the electron and nuclear densities is obtained by solving
Poisson’s problem with zero-Neumann boundary conditions
on boundaries parallel to the slab surface. Additionally, a zero
mean-value constraint is imposed to fix the reference of the
electrostatic potential (ϕ(x)). In this setup, the modeling of
surfaces and interfaces in vacuum can be accomplished by
setting the external electric field to zero ( 0= ).

In contrast to the CEF setup, the CPD setup directly
enforces the desired (experimental) potential bias by imposing
constraints on the total electrostatic potential ( (x)). Note
that the CPD setup can be modified to include solvation
effects77,78 with appropriate changes to the Poisson problem to
determine the total electrostatic potential. The two setups
(CEF and CPD) control different parameters (δVapp and δ ,
respectively) and hence have different electronic ground-states
as demonstrated in Figures 6 and 7. Additionally, the L-CPD
setup, an extension of the CPD setup, is proposed by localizing
the region where δ is controlled, which can have implications
in modeling physical systems exposed to potential differences
in localized regions. Note that the L-CPD setup demonstrated
in this work cannot be trivially implemented in PW-DFT.

To further contrast the two setups (CEF and CPD), we
compared the planar average electron density (ρ0(z)) and bare
potential of our representative systems. We observed for (111)
Al FCC and (111) GaAs a similar behavior of Vbare

0 (z) within
the slab due to screening effects, while for the La-terminated
LLZO slab, we noticed a significant difference in Vbare

0 (z) in the
region of the slab. For all of the systems considered, we
observed that the dipole moment response to the potential bias
was stronger in the CPD setup than in CEF, resulting in
steeper variations in surface and adsorption energies with
applied bias. Overall, the CPD setup consistently demonstrates
greater sensitivity to the external potential bias in both surface
energy and adsorption energy calculations compared to the
CEF setup and should represent experimental scenarios of an
applied potential bias better. Finally, the two setups (CEF and
CPD) as implemented in DFT-FE offer a robust framework for
investigating surfaces and interfaces without any underlying
assumptions or correction schemes, while also enabling
simulations that scale better with available computational
resources compared to most state-of-the-art PW-DFT codes.
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