- Supporting Information for -

Real-space methods for ab initio modeling of surfaces and interfaces under external potential bias

Kartick Ramakrishnan,[†] Gopalakrishnan Sai Gautam,^{*,‡} and Phani Motamarri^{*,†}

†Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 560012, India

‡Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India

E-mail: saigautamg@iisc.ac.in; phanim@iisc.ac.in

S1 Computational Details

As discussed in the main manuscript, the ONCV pseudpotential used for the calculations performed in this work are from pseudo-dojo¹ and SPMS² repositories. The choice of pseudopotential used depends on the $E_{\rm cut}$ parameter obtained from a discretization study performed in QE. The pseudopotential data that required a lesser $E_{\rm cut}$ and thereby softer was used for all systems, as listed in Table S1.

Table S1: Pseudopotential used for benchmarking systems

S.No	Benchmarking system	Atom Types	Pseudopotential Repository
1	La-terminated LLZO	Li, La, Zr, O	$SPMS^2$
2	(111) GaAs	Ga, As	SPMS^2
3	(111) Al slab	Al	$pseudodojo^1$
4	Na on (111) Al slab	Al, Na	$pseudodojo^1$

S2 Benchmarking CEF setup

In this subsection, we benchmark the CEF method of applying an external potential bias against the sawtooth potential³ used in QE, by comparing the differences in free energy, ionic forces, and dipole moments at various external electric fields. Our benchmarking shows excellent agreement in free energies, ionic forces, and dielectric response to the applied external field.

Slope	Δ free energy	Δ ion force	Δ dipole moment
$\left(\frac{\mathrm{Ha}}{\mathrm{bohr}}\right)$	$\left(\frac{\mathrm{Ha}}{\mathrm{atom}}\right)$	$\left(\frac{\mathrm{Ha}}{\mathrm{bohr}}\right)$	(D)
-0.0035	2.28×10^{-6}	3.36×10^{-5}	6.06×10^{-4}
-0.0025	2.28×10^{-6}	3.36×10^{-5}	9.79×10^{-4}
-0.00125	2.28×10^{-6}	3.36×10^{-5}	3.08×10^{-4}
0.00	2.28×10^{-6}	3.36×10^{-5}	-7.21×10^{-4}
0.00125	2.27×10^{-6}	3.36×10^{-5}	-6.89×10^{-4}
0.0025	$2.27 imes 10^{-6}$	3.36×10^{-5}	-8.65×10^{-5}
0.0035	2.27×10^{-6}	3.36×10^{-5}	-6.97×10^{-4}

Table S2: Comparison of the differences in free energy, ionic forces and dipole moment between QE and DFT-FE for La-terminated LLZO slab.

Slope	Δ free energy	Δ ion force	Δ dipole moment
$\left(\frac{\mathrm{Ha}}{\mathrm{bohr}}\right)$	$\left(\frac{\mathrm{Ha}}{\mathrm{atom}}\right)$	$\left(\frac{\mathrm{Ha}}{\mathrm{bohr}}\right)$	(D)
-0.0035	2.28×10^{-6}	$3.36 imes 10^{-5}$	$6.06 imes 10^{-4}$
-0.0025	$2.28 imes 10^{-6}$	3.36×10^{-5}	$9.79 imes 10^{-4}$
-0.00125	2.28×10^{-6}	3.36×10^{-5}	3.08×10^{-4}
0.00	2.28×10^{-6}	3.36×10^{-5}	-7.21×10^{-4}
0.00125	$2.27 imes 10^{-6}$	3.36×10^{-5}	-6.89×10^{-4}
0.0025	$2.27 imes 10^{-6}$	3.36×10^{-5}	-8.65×10^{-5}
0.0035	2.27×10^{-6}	3.36×10^{-5}	-6.97×10^{-4}

Table S3: Comparison of the differences in free energy, ionic forces and dipole moment between QE and DFTFE for (111) GaAs slab.

Slope	Δ free energy	Δ ion force	Δ dipole moment
$\left(\frac{\mathrm{Ha}}{\mathrm{bohr}}\right)$	$\left(\frac{\mathrm{Ha}}{\mathrm{atom}}\right)$	$\left(\frac{\mathrm{Ha}}{\mathrm{bohr}}\right)$	(D)
-0.008	2.89×10^{-5}	$3.36 imes 10^{-5}$	$1.45 imes 10^{-3}$
-0.004	2.89×10^{-5}	3.36×10^{-5}	2.55×10^{-4}
-0.002	2.89×10^{-5}	3.36×10^{-5}	-3.81×10^{-4}
-0.001	$2.89 imes 10^{-5}$	3.36×10^{-5}	1.54×10^{-4}
0.00	$2.89 imes 10^{-5}$	3.36×10^{-5}	2.11×10^{-4}
0.001	2.89×10^{-5}	3.36×10^{-5}	1.28×10^{-4}
0.002	2.89×10^{-5}	3.36×10^{-5}	-1.07×10^{-3}
0.004	$2.89 imes 10^{-5}$	3.36×10^{-5}	8.38×10^{-5}
0.008	2.89×10^{-5}	3.36×10^{-5}	1.66×10^{-3}

Table S4: Comparison of the differences in free energy, ionic forces and dipole moment between QE and DFTFE for (111) Al FCC slab.

References

- van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.; Hamann, D.; Gonze, X.; Rignanese, G.-M. The PseudoDojo: Training and grading a 85 element optimized normconserving pseudopotential table. *Comput. Phys. Commun.* **2018**, *226*, 39–54.
- (2) Shojaei, M. F.; Pask, J. E.; Medford, A. J.; Suryanarayana, P. Soft and transferable pseudopotentials from multi-objective optimization. *Computer Physics Communications* 2023, 283, 108594.
- (3) Kunc, K.; Resta, R. External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response. *Physical Review Letters* **1983**, *51*, 686.