

Supporting Information

for Adv. Energy Mater., DOI 10.1002/aenm.202304091

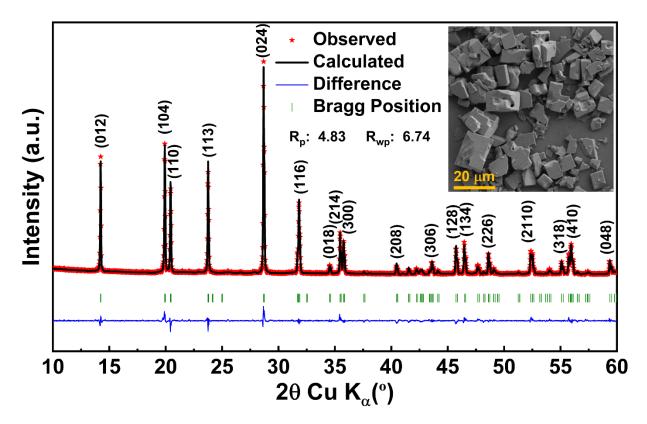
Stabilizing Multi-Electron NASICON-Na $_{1.5}$ V $_{0.5}$ Nb $_{1.5}$ (PO $_4$) $_3$ Anode via Structural Modulation for Long-Life Sodium-Ion Batteries

Biplab Patra, Rashmi Hegde, Anirudh Natarajan, Debolina Deb, Dorothy Sachdeva, Narayanan Ravishankar, Keshav Kumar, Gopalakrishnan Sai Gautam and Premkumar Senguttuvan*

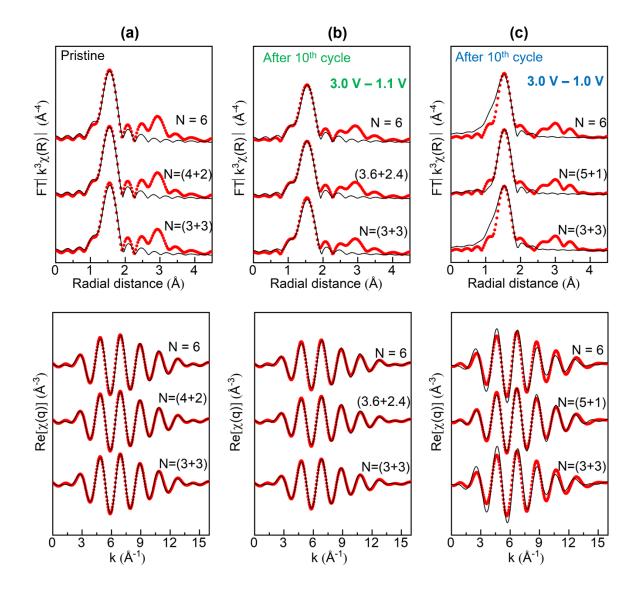
Supporting Information

Stabilizing Multi-electron NASICON-Na_{1.5}V_{0.5}Nb_{1.5}(PO₄)₃ Anode via Structural Modulation for Long-life Sodium-ion Batteries

Biplab Patra, Rashmi Hegde, Anirudh Natarajan, Debolina Deb, Dorothy Sachdeva, Narayanan Ravishankar, Keshav Kumar, Gopalakrishnan Sai Gautam, and Premkumar Senguttuvan *


B. Patra, R. Hegde, K. Kumar, P. Senguttuvan
New Chemistry Unit, International Centre for Materials Science, and School of Advanced Materials
Jawaharlal Nehru Centre for Advanced Scientific Research
Jakkur, Bangalore-560064, India.

A. Natarajan, D. Deb, G.S. Gautam Department of Materials Engineering Indian Institute of Science, Bengaluru-560012, India.


A. Natarajan Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli- 620015, India.

D. Sachdeva, N. Ravishankar Materials Research Centre Indian Institute of Science, Bengaluru-560012, India.

Email: prem@jncasr.ac.in

Figure S1. Rietveld refinement profile of the X-ray diffraction (XRD) pattern obtained for $Na_0Nb_2(PO_4)_3$ (N_0NbP). Inset shows scanning electron microscopy (SEM) image of N_0NbP .

Figure S2. Nb K-edge extended X-ray absorption fine structure (EXAFS) fit for different coordination models in R-space and q-space for (a) pristine N₀NbP, (b) after 10^{th} cycle of N₀NbP anodes cycled in 3.0 V – 1.1 V and (c) 3.0 V – 1.0 V potential window.

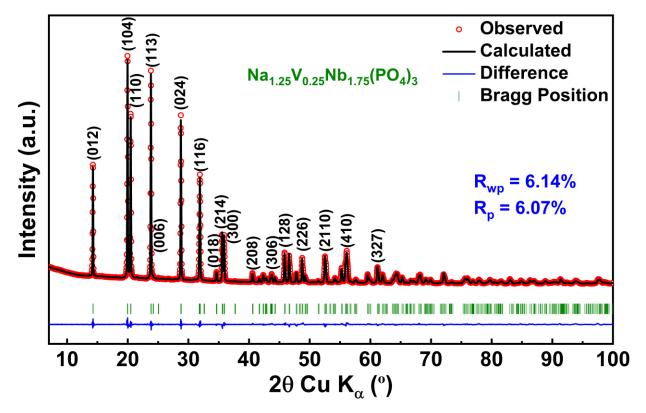
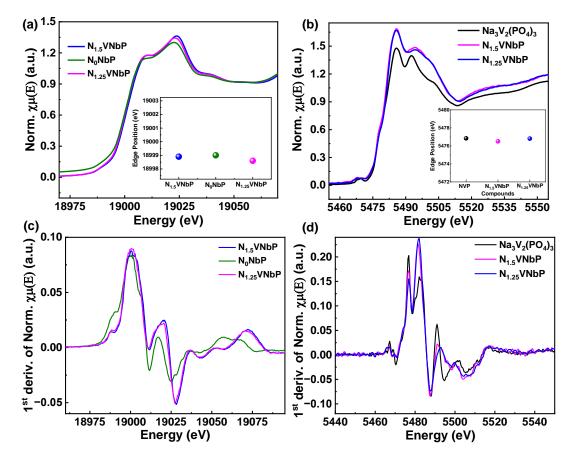
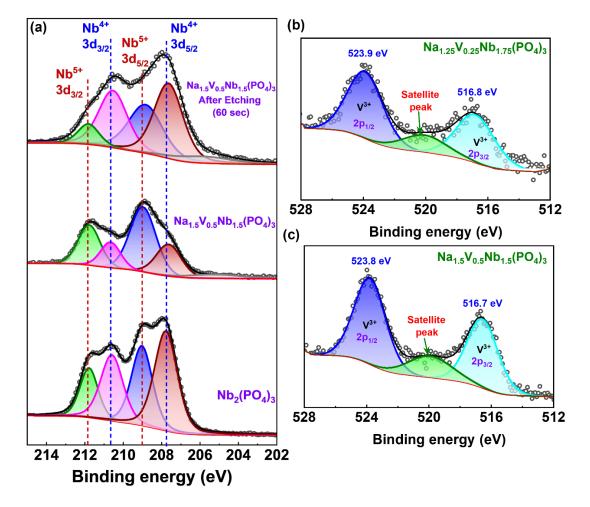




Figure S3. Rietveld refinement of XRD pattern collected on the $Na_{1.25}V_{0.25}Nb_{1.75}(PO_4)_3$ ($N_{1.25}VNbP$) anode.

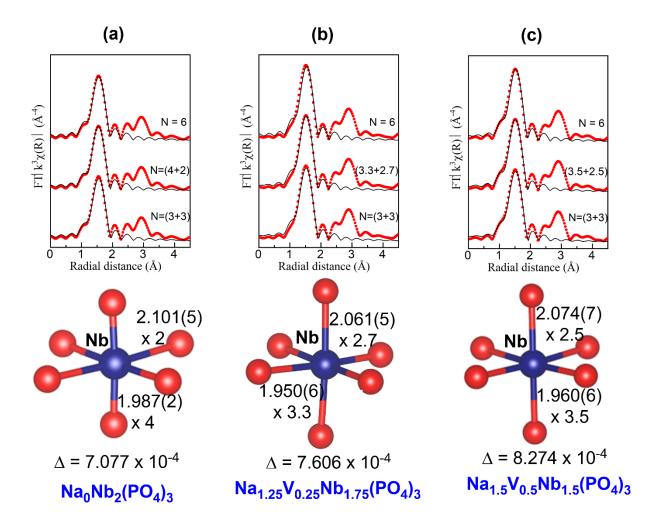


Figure S4. Normalized X-ray absorption near edge structure (XANES) spectra of N_0NbP , $N_{1.25}VNbP$, and $N_{1.5}VNbP$ compounds at (a) Nb and (c) V K-edges, the edge position determined by the first inflection point of the derivative spectra (b) Nb and (d)V K-edge. The colour code in the inset belongs to the spectra. $Nb_2(PO_4)_3$ and $Na_3V_2(PO_4)_3$ taken as Nb and V standard.

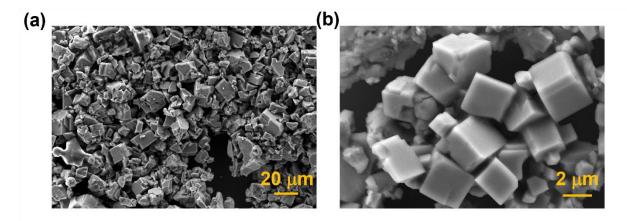


Figure S5. X-ray photoelectron spectroscopy (XPS) spectra of (a) Nb3d for N₀NbP, and N_{1.5}VNbP, (b) V2p for N_{1.5}VNbP and N_{1.5}VNbP.

The X-ray photoelectron spectroscopy (XPS) spectra of N_0NbP composed of Nb-3d_{3/2} and Nb-3d_{5/2} peaks located at 211.7 eV and 208.7 eV suggesting Nb⁵⁺, whether the peak at 210.7 eV and 207.8 eV indicates the presence of Nb⁴⁺. This result confirms the mixed valence of Nb in N₀NbP. Similar peak observed in case of N_{1.5}VNbP with different proportion in the surface indicating the surface oxidation of Nb⁵⁺ and the peak intensity decreases after etching which corresponds the presence of Nb⁴⁺ in bulk. The V 2p spectra is made up of two primary single peaks. at 517.0 eV (V-2p_{3/2}) and 523.8 eV (V-2p_{1/2}) with a satellite peak shown in Fig. S9b, suggesting the existence of V³⁺ in both N_{1.5}VNbP and N_{1.25}VNbP samples.

Figure S6. Nb K-edge EXAFS fits with different coordination models in R-space and the local environment of NbO₆ for as-synthesized (a) N₀NbP, (b) Na_{1.25}VNbP, and (c) Na_{1.5}VNbP anodes.

Figure S7. (a,b) SEM images of N_{1.25}VNbP at different scales.

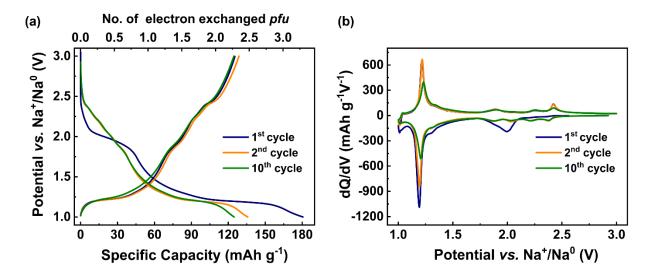


Figure S8. (a) Voltage-capacity and (b) dQ/dV profiles of $N_{1.25}VNbP$ anode.

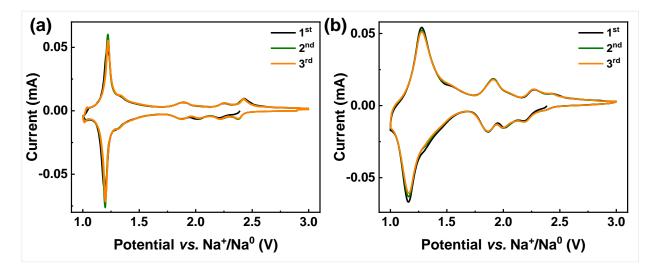


Figure S9: CV profiles of (a) N_{1.25}VNbP and (b) N_{1.5}VNbP anodes at a scan rate of 0.05 mV s⁻¹.

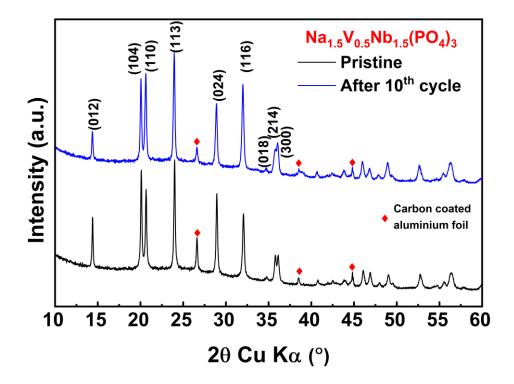
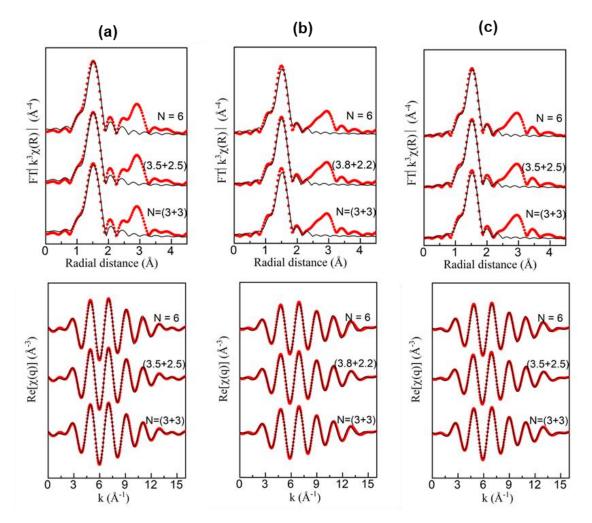



Figure S10. XRD patterns of pristine and cycled N_{1.5}VNbP anodes.

Figure S11. Nb K-edge EXAFS fit for different coordination models in R-space and q-space for (a) pristine, (b) after 1st cycle and (c) after 10th cycle of Na_{1.5}VNbP electrode.

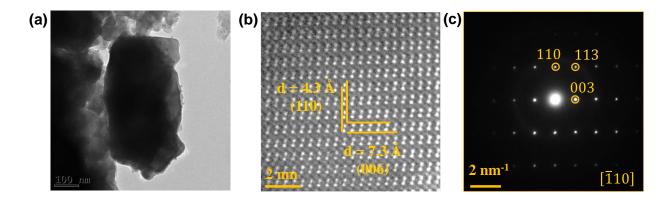


Figure S12. (a) Low magnification TEM image, (b) HRTEM image, and (c) SAED pattern of the $N_{1.5}VNbP$ anode collected after the 10^{th} cycle.

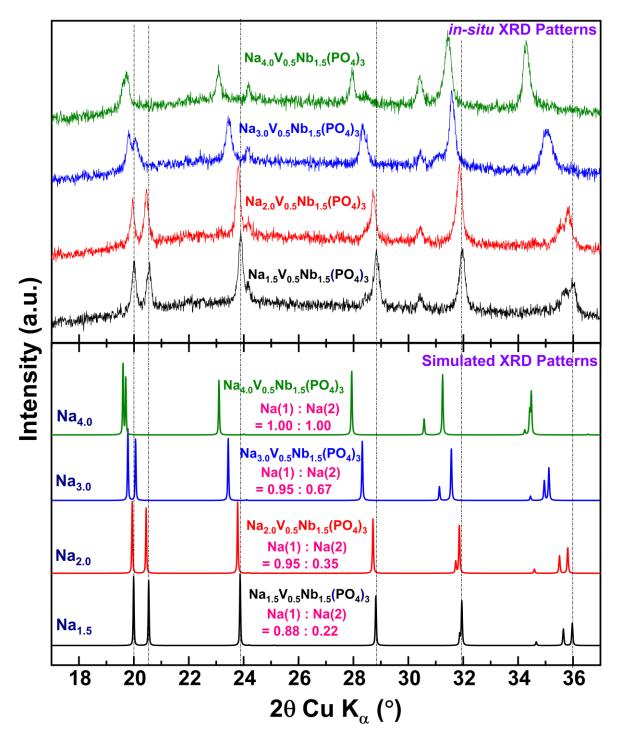
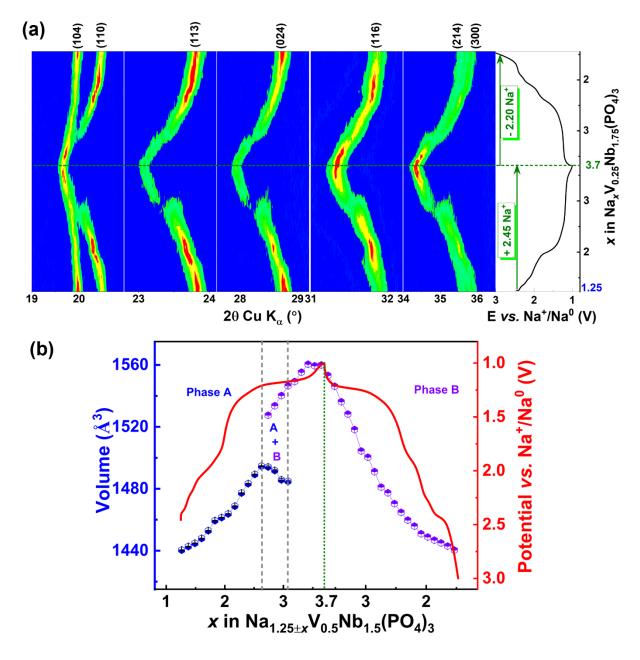



Figure S13. Comparison of selected *in-situ* and simulated XRD patterns.

Figure S14. (a) Intensity contour map of *in-situ* XRD patterns and (b) evolution of unit cell volume of $N_{1.25}$ VNbP anode during the second cycle.

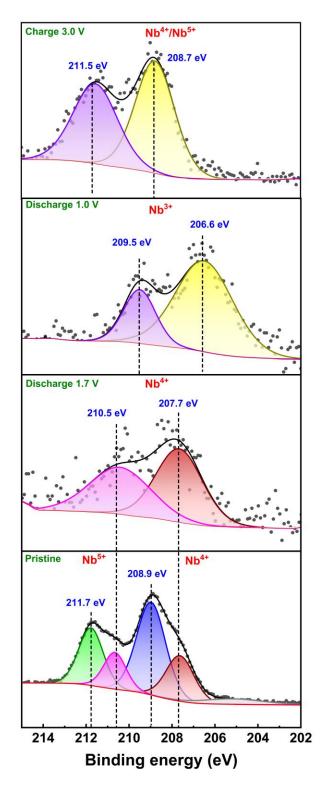
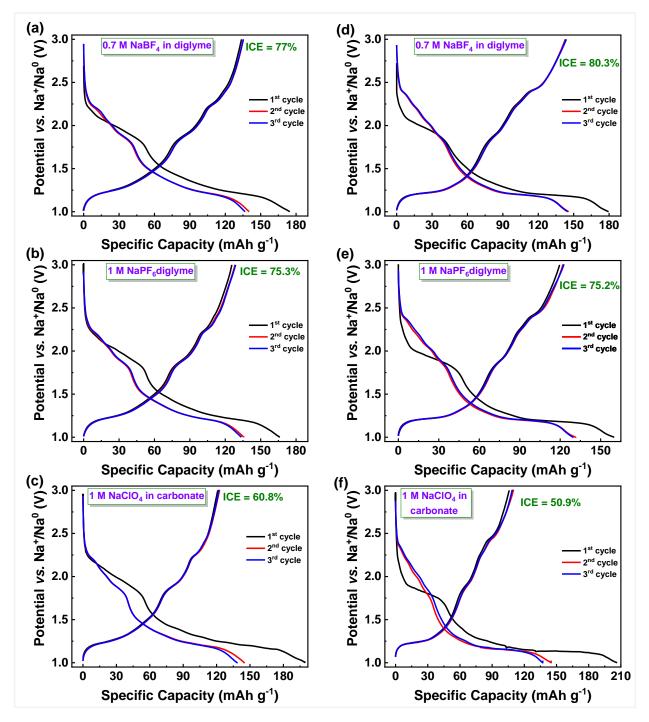



Figure. S15. Ex-situ XPS spectra of Nb3d during cycling for N1.5VNbP

Figure S16. Voltage-capacity plots at C/5 rate in different electrolyte systems (a-c) N_{1.5}VNbP, (d-f) N_{1.25}VNbP

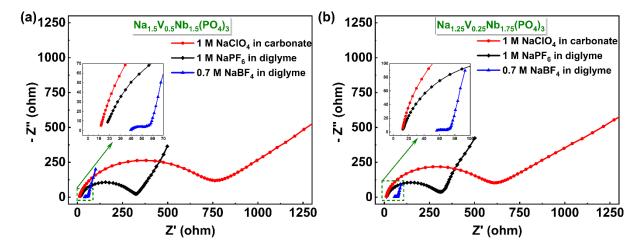
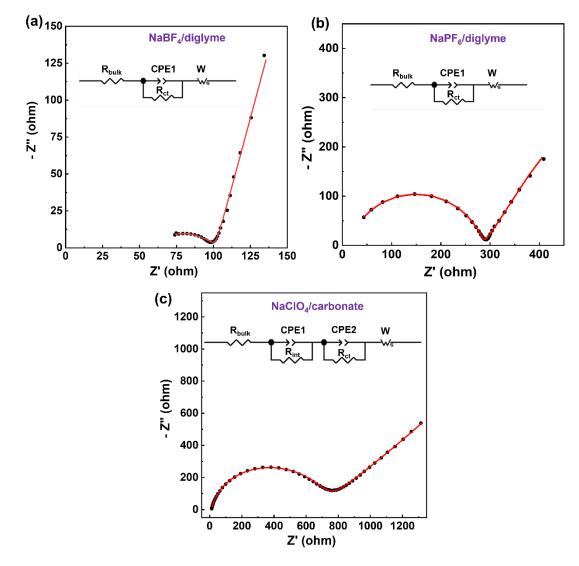



Figure S17. Pristine impedance comparison for $Na_{1.5}VNbP$ and $Na_{1.25}VNbP$ in different electrolytes.

Figure S18. Equivalent circuit model for fitting Nyquist plots of electrochemical impedance spectroscopy (EIS) measurements in different electrolytes for $N_{1.5}VNbP$. R_{bulk} , R_{int} and R_{ct} denote the ion transport in bulk electrolyte, interfacial resistance between electrode and electrolyte and charge transfer resistance, respectively. CPE1 and CPE2 are the constant phase elements. W is the Warburg element that represents solid state diffusion.

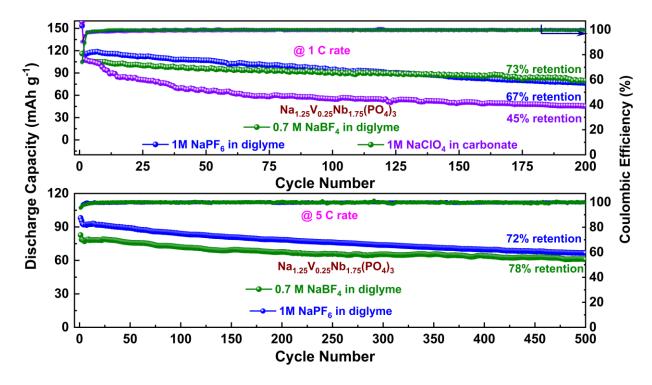


Figure S19. Long-term cycling stability of the N_{1.25}VNbP electrode at 1 C and 5 C rates.

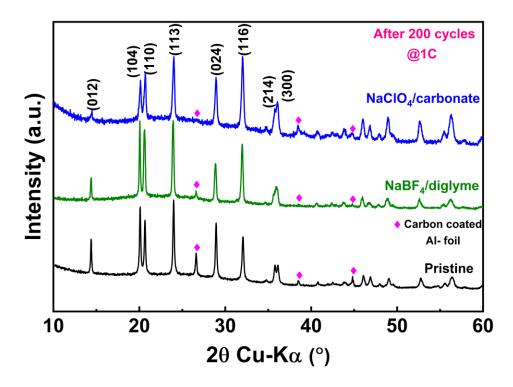
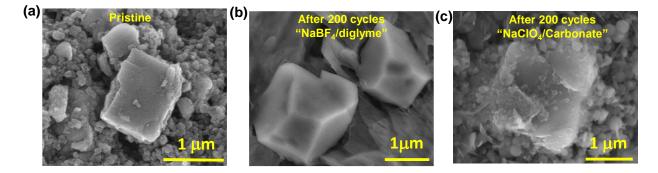
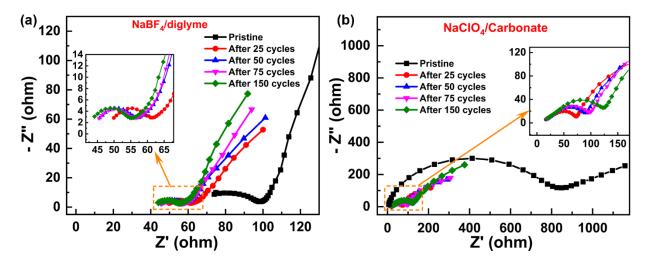
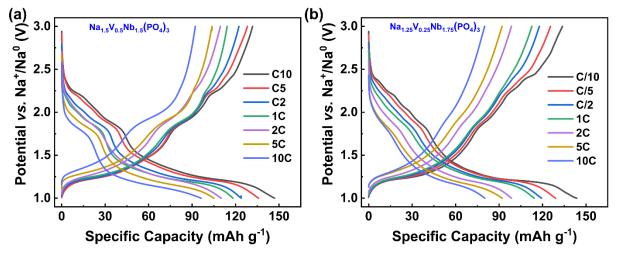


Figure S20. XRD patterns of pristine and cycled Na_{1.5}VNbP anodes in different electrolytes.

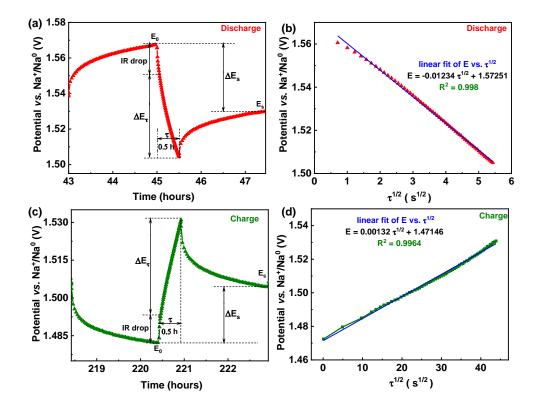

Figure S21. SEM images of (a) pristine and (b,c) cycled N_{1.5}VNbP anodes in different electrolytes.

Figure S22. Electrochemical impedance spectroscopy (EIS) spectra of Na_{1.5}VNbP collected at different cycles in (a) NaBF₄/diglyme and (b) NaClO₄/carbonate electrolyte.

Figure S23. Voltage vs. capacity profiles of Na_{1.5}VNbP and Na_{1.25}VNbP anode collected at different C-rates.

Figure S24. Potential vs. time curves of the N_{1.5}VNbP anode for a single step galvanostatic intermittent titration technique (GITT) experiment during (a) discharge, and (c) charge processes at C/10 rate and their corresponding linear fitted plot of potential vs. $\tau^{1/2}$ for the (b) discharge and (d) charge processes.

The Na diffusion kinetics of $N_{1.5}VNbP$ was investigated by galvanostatic intermittent titration technique (GITT) after 3 cycles when it obtain the equilibrium state. During the experiment, the cell was charged and discharged at C/10 rate for 0.5 h followed by relaxation of 2 h to allow the voltage to reach equilibrium and this process was repeated to the cell during the entire cycle. The sodium-ion diffusivity (D_{Na^+}) values can be determined according to the equation established by Weppner and Huggins^[1]:

$$D_{Na^{+}} = \frac{4}{\pi\tau} \left(\frac{m_{B}V_{M}}{M_{B}A}\right)^{2} \left(\frac{\Delta E_{s}}{\Delta E_{\tau}}\right)^{2} \qquad (\tau \ll \frac{L^{2}}{D_{Na^{+}}})^{2}$$

The parameters involved in the above equation are explained below,

 τ = time of constant current pulse (1800 s), m_B = mass of the active material (g), M_B = molecular weight (g mol⁻¹), V_M = molar volume (cm³ mol⁻¹), A = total contacting area of electrode with electrolyte (cm²). ΔE_s = Difference between the voltage during the open circuit period, ΔE_{τ} = total change of cell voltage during a constant current pulse excluding the resistance (IR) drop, and L = average radius of the active material particles.

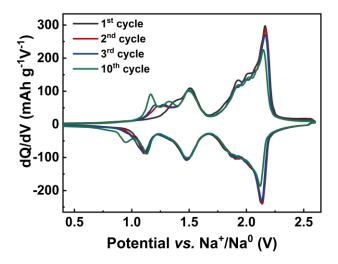


Figure S25. dQ/dV profile for $N_{1.5}VNbP||NVP$ Full cell

Table S1. Lattice parameters obtained from the Le-Bail fitting of powder XRD patterns of
pristine and cycled N ₀ NbP electrodes.

Nb ₂ (PO ₄) ₃ , space group: $R\bar{3c}$ (#167); Z = 6						
	a (Å)	c (Å)	V (Å ³)			
Pristine	8.68438	22.0926	1442.962			
3.0 V- 1.1 V	8.68136	22.27101	1453.604			
3.0 V - 1.0 V	8.68994	22.59892	1477.922			

Table S2. Refined parameters for the first shell of EXAFS spectra collected at Nb K-edge of the pristine N_0NbP and after 10^{th} cycle in different voltage window.

	k-range: $2.6 - 13 \text{ Å}^{-1}$, dk = 1.0, window: hanning								
(a) Pristine NoNbP									
Coordination	d(Nb-O) Å	S ² 0	E ₀ (eV)	$\sigma^2 \mathring{A}^2$	R-factor				
6	2.011(5) x 6	0.72(8)	4.3(7)	0.0034(8)	0.0154				
3 + 3	1.968(4) x 3 2.069(4) x 3	0.72(8)	5.1(6)	0.0006(6)	0.0113				
4 + 2	4+2 1.987(2) x 4		$1.987(2) \times 4$		0.0005(8)	0.0090			
	(b) After 1	10 th cycle (3	3.0 V- 1.1 V wir	ndow)					
6	2.018(2) x 6	0.63(4)	2.2(9)	0.004(1)	0.0225				
3 + 3	1.971(4) x 3 2.084(8) x 3	0.63(4)	3.2(7)	0.0002(7)	0.0148				
3.6 + 2.4	2.098(8) x 2.4 1.98362 x 3.6	0.63(4)	3.1(7)	0.0003(3)	0.0142				
	(c) After 1	0 th cycle (3	.0 V - 1.0 V win	ndow)					
6	2.030(3) x 6	0.7(1)	-2.41(1.6)	0.008(8)	0.1590				
3 + 3	2.031(5) x 3 2.039(6) x 3	0.7(1)	-0.5(1)	0.008(1)	0.184				
5 + 1	2.031(4) x 5 1.715(5) x 1	0.7(1)	-1.6(8)	0.006(1)	0.0135				

Table S3. Crystallographic parameters obtained from the Rietveld refinements of (**a**) Na_{1.5}VNbP and (**b**) Na_{1.25}VNbP.

(a) $Na_{1.5}V_{0.5}Nb_{1.5}(PO_4)_3$, space group: $R\overline{3c}$ (#167); Z = 6										
a = 9.62	a = 8.6368(7) Å; $c = 22.0647(3)$ Å; $c/a = 2.554$; $V = 1425.16(3)$ Å ³ ; $V/Z = 237.526(7)$ Å ³									
$a = 8.0308(7) \text{ A}; c = 22.0047(3) \text{ A}; c/a = 2.554; v = 1425.10(3) \text{ A}^3; v/z = 257.520(7) \text{ A}^3$										
$R_{wp} = 8.12\%$; $R_p = 8.79\%$; $R_{Bragg} = 7.40\%$										
Atom	Wyckoff	x	у	Z.	Uiso, Å ²	Occ.				
Nb	12c	0	0	0.14244(4)	0.00033(17)	0.75				
V	12c	0	0	0.14244(4)	0.00033(17)	0.25				
P(1)	18e	0.2835(2)	0	0.25	0.013(5)	1.0				
Na(1)	6b	0	0	0	0.172(11)	0.758(4)				
Na(2)	18e	0.6320(1)	0	0.25	0.5454(1)	0.212(4)				
O(1)	36f	0.0296(4)	0.2070(3)	0.19364(14)	0.011(11)	1.0				
O(2)	36f	0.1974(3)	0.1692(3)	0.08727(12)	0.0009(9)	1.0				
	(b) Na	1.25 V $_{0.25}$ Nb $_{1.75}$ ($(PO_4)_3$, space	group: R3c (#	167); Z = 6					
<i>a</i> = 8.664	46(4) Å; $c = 2$	22.066(2) Å; c	a = 2.546; V	/ = 1434.730(2) Å ³ ; V/Z = 239	9.121(2) Å ³				
		$R_{wp} = 6.149$	%; $R_{\rm p} = 6.07\%$	$b; R_{\mathrm{Bragg}} = 2.67$	'%					
Atom	Wyckoff	x	у	Z	Uiso, Å ²	Occ.				
Nb	12c	0	0	0.1416(5)	0.0108(2)	0.875				
V	12c	0	0	0.1416(5)	0.0108(2)	0.125				
P(1)	18e	0.2823(2)	0	0.25	0.0133(5)	1.0				
Na(1)	6b	0	0	0	0.965(2)	0.829(2)				
Na(2)	18e	0.7810(2)	0	0.25	0.670(1)	0.113(6)				
O(1)	36f	0.0348(4)	0.2041(4)	0.1923(1)	0.021(3)	1.0				
O(2)	36f	0.2000(1)	0.1683(3)	0.0916(1)	0.0074(8)	1.0				

Table S4. Average O(2)-O(2) distances obtained from the Rietveld refinement.

Sample	O2-O2 (Å)
N ₀ NbP	4.1968
Na _{1.25} VNbP	4.0320
Na _{1.5} VNbP	3.8682

Table S5. Refined parameters for the first shell of EXAFS spectra at Nb K-edge of pristine $N_{1.25}$ VNbP anode.

	k-range: $2.6 - 13 \text{ Å}^{-1}$, dk = 1.0, window: hanning							
		Na1.25V0.25N	b1.75(PO4)3					
6	2.000(8) x 6	0.8(1)	2.9(2.7)	0.003(1)	0.0218			
3 + 3	1.941(5) x 3 2.051(4) x 3	0.8(1)	2.2(8)	0.0007(5)	0.0173			
3.3 + 2.7	1.950(6) x 3.3 2.061(5) x 2.7	0.8(1)	2.7(9)	0.0004(5)	0.0153			

Table S6. Refined parameters for the first shell of EXAFS spectra for Nb K-edge of the (a) pristine Na_{1.5}VNbP, (b) after 1st cycle and (c) after 10th cycle.

	k-range: 2.6 –	13 Å ⁻¹ , dk =	1.0, window: h	nanning					
(a) Pristine Na1.5V0.5Nb1.5(PO4)3									
Coordination	d(Nb-O) Å	S ² 0	E0 (eV)	$\sigma^2 \mathring{A}^2$	R-factor				
6	1.988(9) x 6	0.8(1)	4.02(2.0)	0.0039(9)	0.0146				
3 + 3	1.935(3) x 3 2.047(6) x 3	0.8(1)	4.2(1.90	0.0001(6)	0.0110				
3.5 + 2.5	1.949(8) x 3.5 2.066(4) x 2.5	0.8(1)	4.94 (2.3)	0.0002(5)	0.0087				
		(b) After	1 st cycle						
6	1.991(7) x 6	0.70(9)	-1.1(2.1)	0.003(1)	0.0231				
3 + 3	1.9440(8) x 3 2.049(2) x 3	0.70(9)	-0.53(1.0)	0.0003(8)	0.0199				
3.8 + 2.2	1.960(4) x 3.8 2.073(7) x 2.2	0.70(9)	-0.2(8)	0.0003(9)	0.0168				
		(c) After 1	10 th cycle						
6	1.996(8)	0.70(9)	2.0(1.5)	0.003(8)	0.0125				
3 + 3	1.946(3) x 2.049(6) x 3	0.70(9)	2.0(1.5)	0.0005(6)	0.0095				
3.5 + 2.5	1.958(1) x 3.5 2.065(2) x 2.5	0.70(9)	2.4(1.5)	0.0005(6)	0.00884				

Electrolyte		Pristine	•	A	fter 25	су	A	fter 50	cy	A	fter 75	cy	Ai	fter 150	су
	R _{bulk}	R _{int}	R _{ct}	R _{bulk}	R _{int}	R _{ct}	R _{bulk}	R _{int}	R _{ct}	R_{bulk}	R _{int}	R _{ct}	R _{bulk}	R _{int}	R _{ct}
NaBF ₄ /	57.06	-	44.67	46.46	-	16.62	41.95	-	17.02	39.79	-	20.59	36.27	-	20.97
diglyme															
NaPF ₆ /	11.47	-	274.8	14.22	-	7.235	15.55	-	8.13	10.65	-	14.95	9.423	-	16.91
diglyme															
NaClO ₄ /	8.976	282.3	393.9	10.43	30.13	30.28	10.74	38.63	41.25	10.77	42.43	44.61	9.767	47.89	64.93
carbonate															

Table S7. Fitted parameters from EIS of Na_{1.5}VNbP|Na cell cycled in different electrolytes.

Cathode Anode	Capacity, Current	Average Voltage	Capacity retention	Rate performance	Energy Density		Ref
	density	, crugo		F	Based on Cathode	Based on Cathode + Anode	
Na3V2(PO4)3 NaTi2(PO4)3	128 mAh g ⁻¹ , 13.3 mA g ⁻¹	1.2 V	80% after 1000 cycles, at 1.33 A g ⁻¹	90 mAh g ⁻¹ at 6.65 A g ⁻¹	-	73 Wh kg ⁻¹	[2]
Na3V2(PO4)3 Na3V2(PO4)3	100 mAh g ⁻¹ , 58.8 mA g ⁻¹	1.7 V	75% after 200 cycles, at 0.117 A g ⁻¹	42 mAh g ⁻¹ at 1.176 A g ⁻¹	185.5 Wh kg ⁻¹	-	[3]
Na3V2(PO4)3 Na3V2(PO4)3	90.2 mAh g ⁻¹ , 29 mA g ⁻¹	1.7 V	71% after 280 cycles at 234 mA g ⁻¹	34 mAh g ⁻¹ at 1.176 A g ⁻¹	162 Wh kg ⁻¹	-	[4]
Na ₂ VTi(PO ₄) ₃ Na ₂ VTi(PO ₄) ₃	72 mAh g ⁻¹ , 125 mA g ⁻¹	1.2 V	74% after 10000 cycles at 1.25 A g ⁻¹	49 mAh g ⁻¹ at 2.5 A g ⁻¹	-	33.2 Wh kg ⁻¹	[5]
Na3V2(PO4)3 NaTi2(PO4)3	103 mAh g ⁻¹ , 117 mA g ⁻¹	1.2 V	96.9% after 300 cycles at 0.585 A g ⁻¹	80 mAh g ⁻¹ at 5.85 A g ⁻¹	90 Wh kg ⁻¹	58 Wh kg ⁻¹	[6]
Na3V2(PO4)3 N1.5VNbP	104 mAh g ⁻¹ , 11.7 mA g ⁻¹	1.9 V	80 % after 1000 cycles at 0.585 A g ⁻¹	70 mAh g ⁻¹ at 0.585 A g ⁻¹	197.6 Wh kg ⁻¹	96 Wh kg ⁻¹	This Work

Table S8. Comparison full Na-ion cells comprising NASICON materials as cathode and anode.

References

- [1] W. Weppner, R. A. Huggins, J. Electrochem. Soc. 1977, 124, 1569.
- [2] Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, *Adv. Energy Mater.* **2016**, *6*, 1502197.
- [3] S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Adv. Mater. 2014, 26, 3545.
- [4] Y. Zhang, H. Zhao, Y. Du, J. Mater. Chem. A 2016, 4, 7155.
- [5] D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik, Y.-S. Hu, F. Fauth, Y. Wei, H. Ehrenberg, G. Chen, F. Du, *Nat. Commun.* **2017**, *8*, 15888.
- [6] W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, *Nano Energy* **2016**, *25*, 145.