

Vishakha Kapoor,^{1#} Baltej Singh,^{1#} Gopalakrishnan Sai Gautam,² Anthony K. Cheetham,^{1,3} and Pieremanuele Canepa^{1,4 *}

¹Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore ²Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India ³Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States ⁴Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 <u>*pcanepa@nus.edu.sg</u> *#*These authors contributed equally

S1 Formation Energy Diagram of NaSICON Na_xV₂(PO₄)₃

From the density functional theory (DFT) total energies we predicted the formation energies E_f of each structure of $Na_xV_2P_{3-i}(Si/S)_iO_{12}$ ($Na_xVP_{3-i}(Si/S)_i$) ranging from x =0 to 4, with respect to the end member states of $Na_0VP_{3-i}(Si/S)_i$ and $Na_4VP_{3-i}(Si/S)_i$, respectively. For example, the formation energy of each structure of Na_xVP_3 can be calculated as in **Eq. S1**:

$$E_f(x) = E[Na_x V_2 P_3 O_{12}] - \left(\frac{4-x}{4}\right) E[V_2 P_3 O_{12}] - \left(\frac{x}{4}\right) E[Na_4 V_2 (PO_4)_3]$$
(S1)

From **Eq. S1**, positive formation energies indicate phase separation of Na_xVP₃ into the end member structures, i.e., Na₁VP₃ and Na₄VP₃. The envelop of points formed by connecting the points with the lowest formation energy ——the ground state structures— forms the so-called pseudo-binary convex hull (pseudo-binary, since the Na-content is the only compositional variable that is allowed to change). Structures above the pseudo-binary convex hull are deemed metastable or unstable, with respect to the pseudo-binary ground states.

Figure S1 Hubbard *U* corrected density functional theory (DFT+*U*) computed convex hull of Na_xV₂(PO₄)₃ vs. Na content (x; 0 < x < 4). Blue dots represent stable entries compositions, and the red dots represents the metastable or unstable orderings at various concentrations of Na in pseudo-binary Na_xV₂(PO₄)₃.

S2 Ground State Orderings of Na_xV₂(PO₄)₃

Figure S2 (a) The rhombohedral ($R\bar{3}c$) structure of Na₄M₂(PO₄)₃. The "lantern unit" is made up of two MO₆ octahedra (cyan) sharing corners with PO₄-³ tetrahedra (grey). The box in (a) highlights the arrangement of the lantern units. Two distinct Na ions, i.e., Na1 (violet) and Na2 (yellow), are present in the rhombohedral NaSICONs. Panel (b) shows the Na ordering around the lantern units in the rhombohedral unit cell. (c) Framework of Na_xV₂P₂Si₁O₁₂ showing the two lanterns of the primitive unit cell, each containing one SiO₄⁴⁻ tetrahedron (pink) and two PO₄³⁻ tetrahedra (grey) cornersharing oxygen with two VO₆ octahedra (cyan).

S2 Formation Energy Diagrams of NaSICON Na_xV₂P_iSi_{3-i}O₁₂

Figure S3 DFT+*U* computed convex hull of $Na_xV_2P_i(Si/S)_{3-i}O_{12}$ for 0 < x < 4. Only the ground state orderings at various concentrations of Na are displayed.

S3 Decomposition Reactions of NaSICON Na_xV₂P_iSi_{3-i}O₁₂

Table S1 DFT computed reaction energies and corresponding dissociation products

of Na_xV₂P_i(Si)_{3-i}O_{12.}

	Reaction	Energy (eV/atom)	E ^{hull} (eV/atom)
0	0.2 Na2V3P2O13 + 0.2 NaV3P2O13 + 0.4 NaV2(PO4)3 + SiO2 -> NaV2Si(PO6)2	0.797338832	0.044296602
1	0.2 Na2VPO6 + 0.4 NaV3P2O13 + 0.2 NaV3O8 + 2 SiO2 -> NaV2Si2PO12	1.391227828	0.077290435
2	NaV2(PO4)3 + SiO2 + 2 VPO5 -> NaV4SiP5O24	1.118329775	0.031952279
3	0.5 NaV3P2O13 + 0.5 NaV2(PO4)3 + 2 SiO2 + 1.5 VPO5 -> NaV4Si2(PO6)4	1.886448466	0.053898528
4	NaV3P2O13 + 3 SiO2 + VPO5 -> NaV4Si3(PO8)3	2.487636407	0.071075326
5	SiO2 + 2 NaVPO5 -> Na2V2Si(PO6)2	0.909462035	0.047866423
6	NaVO3 + 2 SiO2 + NaVPO5 -> Na2V2Si2PO12	1.625797193	0.085568273
7	0.2 Na2V3P2O13 + 0.2 NaV3P2O13 + 1.4 NaV2(PO4)3 + SiO2 -> Na2V4SiP5O24	0.799252096	0.022201447
8	0.6 Na2V3P2O13 + 0.6 NaV3P2O13 + 0.2 NaV2(PO4)3 + 3 SiO2 -> Na2V4Si3(PO8)3	2.305235779	0.064034327
9	0.5 NaV(SiO3)2 + 0.3333 Na4VP2O9 + 0.1667 Na3V3(PO4)4 + 0.6667 NaVPO5 -> Na3V2Si(PO6)2	0.588900858	0.029445043
10	0.3846 NaV(SiO3)2 + 0.4615 Na4VP2O9 + 1.231 SiO2 + 0.07692 NaVPO5 + 0.07692 Na9V14O35 -> Na3V2Si2PO12	0.939653696	0.046982685
11	NaV2(PO4)3 + SiO2 + 2 NaVPO5 -> Na3V4SiP5O24	0.916105635	0.024759612
12	0.5 Na2V3P2O13 + 0.5 NaV2(PO4)3 + 2 SiO2 + 1.5 NaVPO5 -> Na3V4Si2(PO6)4	1.767993387	0.047783605
13	Na2V3P2O13 + 3 SiO2 + NaVPO5 -> Na3V4Si3(PO8)3	2.5893081	0.0699813
14	NaVO3 + Na2V3P2O13 + 4 SiO2 -> Na3V4Si4(PO12)2	3.222808378	0.087102929
15	0.5 Na3V(PO4)2 + 0.5 V2O3 + 0.5 NaV(SiO3)2 + 0.5 Na4P2O7 -> Na4V2Si(PO6)2	0.249203056	0.011866812
16	NaV(SiO3)2 + 0.5 Na3PO4 + 0.25 Na2V3O7 + 0.25 Na4VP2O9 -> Na4V2Si2PO12	0.643479102	0.030641862
17	NaVP2O7 + SiO2 + 3 NaVPO5 -> Na4V4SiP5O24	1.225380448	0.032246854
18	NaVO3 + 3 SiO2 + 3 NaVPO5 -> Na4V4Si3(PO8)3	2.686468248	0.070696533
19	0.3333 Na4VP2O9 + 0.6667 Na3V3(PO4)4 + SiO2 + 1.667 NaVPO5 -> Na5V4SiP5O24	1.015551806	0.02603979
20	0.3846 NaV(SiO3)2 + 0.4615 Na4VP2O9 + 2.231 SiO2 + 2.077 NaVPO5 + 0.07692 Na9V14O35 -> Na5V4Si3(PO8)3	1.893619671	0.048554351
21	0.09091 NaVO3 + 0.6364 Na4VP2O9 + 4 SiO2 + 0.7273 NaVPO5 + 0.1818 Na9V14O35 -> Na5V4Si4(PO12)2	2.631381482	0.06747132
22	0.5 NaV(SiO3)2 + 0.6667 Na4VP2O9 + 0.8333 Na3V3(PO4)4 + 0.3333 NaVPO5 -> Na6V4SiP5O24	0.685964564	0.017149114
23	1.192 NaV(SiO3)2 + 0.7308 Na4VP2O9 + 0.6154 SiO2 + 1.538 NaVPO5 + 0.03846 Na9V14O35 -> Na6V4Si3(PO8)3	1.647532539	0.041188313
24	1.5 Na3V(PO4)2 + 0.3333 V2O3 + 0.5 NaV(SiO3)2 + 0.6667 Na3V2(PO4)3 -> Na7V4SiP5O24	0.325494638	0.007938894
25	0.5 Na3V(PO4)2 + NaV(SiO3)2 + 0.25 V3O5 + 0.75 Na4VP2O9 + 0.5 Na3V2(PO4)3 -> Na7V4Si2(PO6)4	1.005624921	0.024527437
26	1.5 NaV(SiO3)2 + 0.25 V3O5 + 1.25 Na4VP2O9 + 0.5 NaVPO5 -> Na7V4Si3(PO8)3	1.338450674	0.032645138

27	NaVO3 + 2 NaV(SiO3)2 + Na4VP2O9 -> Na7V4Si4(PO12)2	1.800793205	0.043921785
28	2.303 Na3V(PO4)2 + 0.5141 V2O3 + 0.5 NaV(SiO3)2 + 0.1479 Na4P2O7 + 0.01408 V12P7 -> Na8V4SiP5O24	0.574560675	0.013680016
29	0.75 V2O3 + 1.5 NaV(SiO3)2 + 0.5 Na3PO4 + 0.25 Na4P2O7 + Na4VP2O9 -> Na8V4Si3(PO8)3	1.112470668	0.026487397

Table S2 DFT computed reaction energies and corresponding dissociation products

of $Na_xV_2P_i(S)_{3-i}O_{12.}$

	Reaction	Energy (eV/atom)	E ^{hull} (eV/atom)
0	VO2 + VPO4 + 2 SO3 -> V2P(SO6)2	0.9703326714200100	0.057078392436477 70
1	VPO5 + VPO4 + SO3 -> V2P2SO12	0.32226383945993600	0.018956696438830 400
2	SO2 + 3 VO2 + VPO4 + 4 SO3 -> V4PS5O24	1.522129259869730	0.044768507643246 000
3	VPO5 + VO2 + 2 VPO4 + 3 SO3 -> V4P3(SO8)3	1.297154085880100	0.038151590761185 800
4	2 VPO5 + VP2O7 + VPO4 + SO3 -> V4P5SO24	0.6156082469599940	0.018106124910600 500
5	0.5 SO2 + VO2 + 0.5 Na2SO4 + SO3 -> NaV(SO4)2	0.13082850922499700	0.010902375768755 400
6	1.5 SO2 + 2 VO2 + 0.5 Na2SO4 + SO3 -> NaV2(SO4)3	0.7494697362551220	0.041637207569722
7	5 SO2 + 8 VO2 + Na2SO4 + 6 SO3 -> NaV4(SO4)6 + NaV4(SO4)6	2.433074989409360	0.034758214134428 50
8	5 SO2 + 8 VO2 + Na2SO4 + 6 SO3 -> NaV4(SO4)6 + NaV4(SO4)6	2.433074989409360	0.034760931277285 900
9	VPO5 + NaV2(PO4)3 + VP2O7 -> NaV4(PO4)6	0.3384825025007100	0.009670928642879 770
10	VO2 + Na2SO4 + SO3 -> Na2VS2O9	0.4317387319600240	0.030838480854288 100
11	2 NaPO3 + 2 NaVPO5 -> Na2V(PO4)2 + Na2V(PO4)2	0.212511883333326400	0.048011999551294 00
12	2 NaPO3 + 2 NaVPO5 -> Na2V(PO4)2 + Na2V(PO4)2	0.212511883333326400	0.008173533974370 710
13	2 SO2 + 2 VO2 + Na2SO4 -> Na2V2(SO4)3	1.5459732640600200	0.081367013897893 70
14	NaVPO5 + NaVP2O7 -> Na2V2(PO4)3	0.25876956250004900	0.013619450657881 10
15	2 NaVS2 + 0.5 Na2SO4 + 1.5 Na2S -> Na3VS3O + Na3VS3O	0.32046823000001700	0.020183979062499 8
16	2 NaVS2 + 0.5 Na2SO4 + 1.5 Na2S -> Na3VS3O + Na3VS3O	0.32046823000001700	0.020029264375001 100
17	0.5 SO2 + VO2 + 1.5 Na2SO4 + SO3 -> Na3V(SO4)3	0.12872882922501100	0.006775201538163 250
18	3.5 SO2 + 4 VO2 + 1.5 Na2SO4 + SO3 -> Na3V4(SO4)6	2.353280560314890	0.063602177305812 20
19	NaV2(PO4)3 + NaVPO5 + NaVP2O7 -> Na3V4(PO4)6	0.3697876924999260	0.009994261959458 410
20	VO2 + 2 Na2SO4 + SO3 -> Na4VS3O13	0.31149888696003800	0.014833280331429 5

21	0.1481 V2O3 + 1.111 Na3V(PO4)2 + 0.03704 V4P3 + 0.2222 Na3V2(PO4)3 -> Na4V2(PO4)3	0.1546666062963030	0.007365076490314 590
22	0.2308 Na7V4P9O32 + NaVPO5 + 0.6923 Na3V3(PO4)4 + 0.07692 Na4P2O7 -> Na5V4(PO4)6	0.3404983509614680	0.008730726947704 600
23	0.1481 V2O3 + 1.111 Na3V(PO4)2 + 0.03704 V4P3 + 1.222 Na3V2(PO4)3 -> Na7V4(PO4)6	0.10553895129629600	0.002574120763346 070

S4 Energy Density of Hypothetical Compounds

Figure S4 shows the energy density obtained from the predicted voltages and the theoretical gravimetric capacities. While the average voltages are calculated across the extent of Na (de)intercalation ($x \ge 1.0$) possible (in accordance with physically accessible V oxidation states, see **Figure 2** manuscript), the capacities are referenced to the maximum Na content that is feasible for each compound. For example, the gravimetric capacity for Na_xVP₁S₂ is computed across the $1 \le x \le 3$ range, and referenced to the molar mass of Na₃VP₁S₂. The average voltage in the same Na concentration range is used to get the energy density. Contours corresponding to the theoretical energy densities (product of average voltages and gravimetric capacities) of 300-700 Wh/kg are marked as dashed lines to compare different NaSICONs in **Figure S4**.

Figure S4 Correlation of computed average voltages($x \ge 1.0$) of Na_xVP_{3-i}(Si/S)_i NaSICONs and theoretical gravimetric capacities for Na⁺ deintercalation within the feasible Na concentration range, with $x \ge 1.0$. The upper limits of x for capacity calculation of each computed composition are fixed with respect to the physically accessible V oxidation states (**Figure 2**). Contour lines indicate the energy density.