SUPPORTING INFORMATION

Topochemical Modulations from 1D Iron Fluoride Precursor to 3D Frameworks

Arindam Ghosh ^a, Dereje Bekele Tekliye ^d, Emily E. Foley ^e, Varimalla Raghavendra Reddy ^f, Raphaële J. Clément ^e, Gopalakrishnan Sai Gautam ^d, Premkumar Senguttuvan ^{a,b,c,*}

^{*a*}New Chemistry Unit, ^{*b*}International Centre for Materials Science and ^{*c*}School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.

^dDepartment of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, Karnataka, India.

^eMaterials Department, Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States.

^fUGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India.

Author information

*Corresponding Author. Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, Karnataka, India

*E-mail: prem@jncasr.ac.in,

ORCID

Arindam Ghosh: 0000-0001-9014-7345

Emily E. Foley: 0000-0003-2173-7899

Raphaële J. Clément: 0000-0002-3611-1162

Gopalakrishnan Sai Gautam: 0000-0002-1303-0976

Premkumar Senguttuvan: 0000-0001-8465-5896

Figure S1: EDX spectrum and the SEM images of the obtained product after reacting fluoride precursor with (a) NaCl, (b) NaBr, and (c) NaI.

Figure S2: (a) FTIR spectra collected on the products of reactions between IF and NaF/NaCl/NaBr/NaI (Inset: magnified section around the O-H stretching frequency region). (b) Comparison between IR patterns of IF precursor and the final products from the reactions of AI:IF = 1:1 (A^+ = Na⁺, K^+ , and NH₄⁺).

Figure S3: ⁵⁷Fe-Mössbauer spectra of (a) weberite (b) TTB and (c) pyrochlore phases. (d) ²³Na solid-state NMR spin echo and pj-MATPASS spectra¹ collected on weberite-Na₂Fe₂F₇. While the spin echo spectrum exhibits sidebands (denoted with asterisks) due to fast spinning of the sample at the magic angle (MAS) during data acquisition, the pj-MATPASS spectrum only contains isotropic resonances and allows us to identify the resonant frequency of each distinct Na environment in the sample. The arrow indicates the resonance corresponding to amorphous Na₃FeF₆.

Figure S4: Quantitative ²³Na NMR spin echo spectrum for $Na_2Fe_2F_7$ (duplicated from Figure S2d) and its corresponding fit of individual resonances. The chemical shifts for the signals corresponding to Na_3FeF_6 ($\delta = 350$ and 1750 ppm) and their intensity ratio (2:1) were fixed to agree with that previously reported for Na_3FeF_6 . Spinning sidebands are indicated by asterisks (*) and the arrow indicates the isolated resonance corresponding to amorphous Na_3FeF_6 identified in the pj-MATPASS spectrum in Figure S2d.

Figure S5: SEM images of (a) IF precursor, (b) pyrochlore- $NH_4Fe_2F_6$, (c) TTB- $K_{0.58}FeF_3$, and (d) weberite- $Na_2Fe_2F_7$.

Figure S6: XRD patterns of products collected upon heating the IF precursor to 130°C for various time lengths.

Figure S7: Comparison between XRD patterns of the products from the reactions of KI:IF = 1:1. at 130 and 170° C.

Figure S8: Comparison between XRD patterns of the products from the reactions of NH_4I :IF = 1:1 at 130 and 170°C.

Figure S9: Mössbauer spectroscopy data of the products after reacting (a) NaI (b) KI and (c) NH_4I with IF in a 0.25:1.0 ratio.

Figure S10: (a) Schematic representation to convert a low AI concentration product to a high AI concentration product via a two-step process. Comparison of XRD patterns of the products formed at low, high and (low + extra) concentration of (b) NaI, (c) KI, and (d) NH₄I.

Iron Fluoride Structures

In this work, we used a primitive cell for all frameworks considered, except where we considered a 2x1x1 supercell for K_{0.6}FeF₃ (20 formula unit), since the primitive cell did not represent the correct magnetization for Fe. From previous experimental work, iron fluoride perovskites exist as orthorhombic (NaFeF₃)² or cubic (KFeF₃)³ phases. In order to get the correct ground state structure, we calculated the total ground state energy by inserting each cation (Na⁺, K⁺, NH₄⁺) within both phases. As a result, we find that Na and NH₄ prefer the orthorhombic perovskite structure while K prefers the cubic structure.

Figure S11: The crystal structure of (a) one-dimensional $FeF_3 \cdot 3H_2O$ (IF) and (b) a hexagonal tungsten bronze (HTB) type $FeF_3 \cdot 0.33H_2O$. The FeF_6 octahedron is indicated by a deep-sky-blue color polyhedra, where the yellow, red and grey spheres represent fluorine, oxygen and hydrogen atom, respectively.

Figure S12: Representative crystal structure of (a) HTB-Na_{0.25}FeF₃, (b) tetragonal tungsten bronze (TTB) Na_{0.6}FeF₃, (c) perovskite-NaFeF₃, (d) NaFeF₄, (e) pyrochlore-NaFe₂F₆, (f) weberite-Na₂Fe₂F₇ frameworks. The maroon color sphere represents a Na atom. Notations in the figure are identical to **Figure S11**.

Figure S13: Representative crystal structure of (a) HTB- $K_{0.25}$ FeF₃, (b) TTB- $K_{0.6}$ FeF₃, (c) perovskite-KFeF₃, (d) KFeF₄, (e) pyrochlore-KFe₂F₆, (f) weberite- K_2 Fe₂F₇ frameworks. The green color sphere represents a K atom. Notations in the figure are identical to **Figure S11**.

Figure S14: Representative crystal structure of (a) HTB-(NH₄)_{0.25}FeF₃, (b) TTB-(NH₄)_{0.6}FeF₃, (c) perovskite-NH₄FeF₃, (d) NH₄FeF₄, (e) pyrochlore-NH₄Fe₂F₆, (f) weberite-(NH₄)₂Fe₂F₇ frameworks. The blue color sphere represents element N. Notations in the figure are identical to **Figure S11**.

Figure S15: The magnetic configurations of Fe atoms in a representative iron fluoride frameworks, as calculated using DFT. The light blue and yellow spheres represent the Fe and F atoms, respectively, while A represents Na, K, or NH₄. The A atoms have been removed from all structures for clarity. The red arrow indicates the direction of the magnetic moment of the Fe atom. The magnetic moment of Fe atom is ordered antiferromagnetically in (a) HTB-A_{0.25}FeF₃, (e) perovskite-NH₄FeF₃, (f) AFeF₄, (g) pyrochlore-AFe₂F₆, (h) weberite-A₂Fe₂F₇ frameworks, while it is ordered ferromagnetically in (b) TTB-A_{0.6}FeF₃, (c) perovskite-NaFeF₃², and (d) perovskite-KFeF₃⁴ frameworks. Across all iron fluoride frameworks, the magnetic moment ordering of Fe is identical regardless of the A cations, except in the perovskite framework, where NaFeF₃ and KFeF₃ exhibit a ferromagnetic ordering, while NH₄FeF₃ displays an antiferromagnetic ordering. In cases where magnetic ordering information for the frameworks was not available in the literature, we determined the ground state magnetic ordering through density functional theory (DFT) calculations, considering both ferromagnetic and antiferromagnetic ordering.

Hubbard U correction for Fe in iron fluorides

Figure S16: Oxidation (fluorination) reaction enthalpy (blue solid line) variation with increasing U within the SCAN+U frameworks for Fe in iron fluorides. The Horizontal dotted line represents the experimental reaction enthalpy of FeF₂/FeF₃. The vertical dashed red line indicates a Hubbard U correction of 3.6 eV for Fe, which minimizes the error between the DFT calculated and experimental reaction enthalpy.

0 K Phase Diagrams of Na-Fe-F, K-Fe-F and NH₄-Fe-F

Figure S17: Calculated 0 K ternary phase diagram (convex hull) of (a) Na-Fe-F, (b) K-Fe-F and (c) NH_4 -Fe-F. The solid blue circle represents stable compositions laying on/below the convex hull, whereas the solid red circle represents a metastable/unstable phase that lies above the convex hull. The black line denotes a tie line connecting a stable phase.

Figure S18: Schematic illustration of the topochemical transformation from 1D-FeF₃.3H₂O to 3Dweberite-Na₂Fe₂F₇ and pyrochlore-NH₄Fe₂F₆. During the transformation, half of the 1D chains (denoted as A-chain) are retained, while the other half of 1D chains (denoted as B-chain) break to form isolated FeF₆ units, which are then connected to A-chain through corner-sharing. The striking difference between the structures is that the isolated FeF₆ units in the weberite phase share four of their corners with 1D chains (A-chains) while the other two are connected with sodium polyhedra. On the contrary, all the corners of isolated FeF₆ units (from the B-chain) are shared with other FeF₆ (in both A and B-chains) units in the pyrochlore structure

Table S1: Structural parameters of Na₂Fe₂F₇ material.

Formula	$Na_2Fe_2F_7$
Formula Weight	290.66
Temperature (K)	297
Wavelength (Å)	1.54056 & 1.54439
	$K\alpha_1/K\alpha_2 = 2$
Crystal Symmetry	Orthorhombic
Space group	Imma
Lattice parameters:	
<i>a</i> (Å)	7.384 (2)
<i>b</i> (Å)	10.503(4)
<i>c</i> (Å)	7.411(5)
$V(Å^3)$	574.83(7)
α	90.00°
β	90.00°
γ	90.00°
Density (calc.) (gcm ⁻³)	3.392
2θ range for data collection (deg)	10-90
Refinement method	full-matrix least-squares on F ²
R indices	chi square= 2.08
	Rp= 15.5
	Rwp= 8.29

Atomic parameters:

Atom	Х	у	Z	Occ.	U S	Site Sym.
1 Na	0.000	0.000	0.000	1.000	0.022(2)	4a 2/m
2 Na	0.250	0.250	0.750	1.000	0.044(3)	4d .2/m.
3 Fe	0.250	0.250	0.250	1.000	0.063(2)	4c .2/m.
4 Fe	0.000	0.000	0.500	1.000	0.045(2)	4b 2/m
5 F	0.000	0.250	0.133(1)	1.000	0.474(4)	4e mm2
6 F	0.000	0.426(4)	0.726(4)	1.000	0.025(5)	8h m
7 F	0.212(5)	0.400(8)	0.440(0)	1.000	0.116(9)	16j1

Table S2: Structural parameters of K_{0.6}FeF₃ material.

Formula	$K_{0.6}$ FeF ₃
Formula Weight	139.299
Temperature (K)	297
Wavelength (Å)	1.54056 & 1.54439
	$K\alpha_1/K\alpha_2 = 2$
Crystal Symmetry	Tetragonal
Space group	P4/mbm
Lattice parameters:	
a (Å)	12.663(6)
$b(\mathbf{A})$	12.661(8)
c(Å)	7.929(5)
$V(Å^3)$	1272.61(3)
α	90.00°
β	90.00°
γ	90.00°
Density (calc.) (gcm ⁻³)	3.561
2θ range for data collection (deg)	10-90
Refinement method	full-matrix least-squares on F ²
R indices	chi square= 1.90
	Rp= 13.6
	Rwp= 8.74

Atomic parameters:

Atom	x	у	Z	Occ.	U	Site	Sym.
1 K	0.172(9)	0.326(0)	0.000	1.000	0.042(4)	4g	m.2 m
2 K	0.000	0.000	0.000	1.000	0.020(2)	2a	4/m
3 Fe	0.500	0.000	0.500	1.000	0.010(1)	2c	m.m m
4 Fe	0.212(1)	0.075	0.500	1.000	0.010(1)	8j	m
5 F	0.142(5)	-0.068(0)	0.500	1.000	0.030(9)	8j	m
6 F	0.280(3)	0.219(6)	0.500	1.000	0.025(5)	4h	m.2 m
7 F	0.340(1)	-0.007(7)	0.500	1.000	0.044(4)	8j	m
8 F	0.500	0.000	0.000	1.000	0.085(2)	2d	m.m m
9 F	0.206(0)	0.077(1)	0.000	1.000	0.030(5)	8i	m

Table S3: Structural parameters of NH₄Fe₂F₆ material.

Formula	$NH_4Fe_2F_6$
Formula Weight	243.72
Temperature (K)	297
Wavelength (Å)	1.54056 & 1.54439
	$K\alpha_1/K\alpha_2 = 2$
Crystal Symmetry	Orthorhombic
Space group	Pnma
Lattice parameters:	
a (Å)	7.058(1)
$b(\mathbf{A})$	7.454(0)
c(Å)	10.146(0)
$V(Å^3)$	533.80(2)
α	90.00°
β	90.00°
γ	90.00°
Density (calc.) (gcm ⁻³)	2.818
2θ range for data collection (deg)	10-90
Refinement method	full-matrix least-squares on F ²
R indices	chi square= 2.71
	Rp=19.3
	Rwp=11.4

Atomic parameters:

Atom	x	у	Z	Occ.	U	Site	Sym.
1 N	-0.029(0)	0.250	0.757(2)	1.000	0.008(8	8) 4c	.m.
2 Fe	0.000	0.000	0.000	1.000	0.001(1) 4a	-1
3 Fe	0.238(3)	0.250	0.234(8)	1.000	0.001(1) 4c	.m.
4 F	-0.155(6)	0.250	0.220(1)	1.000	0.002(2	2) 4c	.m.
5 F	0.004(7)	0.250	0.943(1)	1.000	0.002(2	2) 4c	.m.
6 F	0.203(3)	0.408(1)	0.147(5)	1.000	0.010(5) 8d	1
7 F	0.737(5)	0.431(8)	0.098(2)	1.000	0.226(8	8) 8d	1

Sample	Γ (mm/s)	IS (mm/s)	QS (mm/s)	% Area
Weberite-Na _{1.99} Fe ₂ F ₇	0.45 ± 0.01	0.29 ± 0.01	0.67 ± 0.01	70 (Fe ³⁺)
	0.63 ± 0.02	1.16 ± 0.01	1.63 ± 0.01	30 (Fe ²⁺)
TTB-K _{0.58} FeF ₃	0.43 ± 0.01	0.44 ± 0.01	0.51 ± 0.01	47 (Fe ³⁺)
	0.69 ± 0.02	1.36 ± 0.03	1.86 ± 0.02	53 (Fe ²⁺)
Pyrochlore-NH ₄ Fe ₂ F ₆	0.43 ± 0.01	0.44 ± 0.01	0.67 ± 0.01	68 (Fe ³⁺)
	0.35 ± 0.02	1.32 ± 0.03	2.67 ± 0.02	32 (Fe ²⁺)
HTB-Na _x FeF ₃	0.46 ± 0.02	0.40 ± 0.01	0.61 ± 0.01	97 (Fe ³⁺)
	0.46 ± 0.02	1.45 ± 0.04	1.30	3 (Fe ²⁺)
HTB-K _x FeF ₃	0.50 ± 0.02	0.40 ± 0.01	0.64 ± 0.01	95 (Fe ³⁺)
	0.50 ± 0.02	1.45 ± 0.04	1.30	5 (Fe ²⁺)
HTB-(NH ₄) _x FeF ₃	0.49 ± 0.01	0.30 ± 0.01	0.61 ± 0.01	84 (Fe ³⁺)
	0.65 ± 0.02	1.18 ± 0.01	1.77 ± 0.01	16 (Fe ²⁺)

Table S4: Parameters of the fitted Mössbauer spectroscopy data.

Table S5: Summary of ¹H NMR fitting parameters.

	Chemical Shift (δ)	Full Width Half Max (FWHM)	Integrated Intensity	Gaussian (100%) vs. Lorentzian (0%) Peak shape
FeF ₃ •3H ₂ O	188	109	44%	0%
	-9	42	56%	1%
FeF ₃ •0.33H ₂ O	187	93	27%	100%
	2	15	34%	0%
	60	54	40%	68%
(NH ₄) _{0.18} FeF ₃	187	91	13%	100%
	2	15	21%	0%
	47	48	31%	0%
	19	37	36%	100%
NH ₄ Fe ₂ F ₆	76	33	70%	50%
	7	41	21%	100%
	47	31	8%	100%

Table S6: The predicted adjacent phases for all stable iron fluorides (A-Fe-F, $A = Na^+$, K^+ , or NH_4^+) and their E^{Hull} values obtained from convex hull calculations are presented. Note that for all stable entities on a phase diagram, energy below the convex hull represents the formation energy of the stable phase with respect to the adjacent stable phases on the convex hull.

No.	Iron Fluoride Frameworks	Adjacent phases	<i>E^{Hull}</i> (meV/atom)
	I	Na-Fe-F	
1	NaFeF ₄	Na ₃ FeF ₆ , FeF ₃	-5
2	NaFeF ₃	FeF ₂ , NaF	-11
	I	K-Fe-F	
3	KFe ₂ F ₆	K ₄ Fe ₃ F ₁₂ , K _{0.25} FeF ₃ , FeF ₂	-1
4	KFeF ₃	FeF ₂ , KF	-92
		NH ₄ -Fe-F	
5	NH ₄ Fe ₂ F ₆	FeF ₃ , NH ₄ FeF ₃	-26
6	NH ₄ FeF ₄	FeF ₃ , NH ₄ F	-13
7	NH ₄ FeF ₃	NH ₄ F, FeF ₂	-25

Table S7: The predicted decomposition products for all unstable or metastable iron fluoride frameworks and their E^{Hull} values obtained from convex hull calculations are presented.

No.	Iron Fluoride Frameworks	Decomposition products	<i>E^{Hull}</i> (meV/atom)					
	Na-Fe-F							
1	NaFe ₂ F ₆	NaFeF ₄ , FeF ₂	83					
2	Na ₂ Fe ₂ F ₇	NaFeF ₄ , Na ₃ FeF ₆ , FeF ₂	16					
3	Na _{0.6} FeF ₃	NaFeF ₄ , Na ₃ FeF ₆ , FeF ₂	52					
4	Na _{0.25} FeF ₃	NaFeF ₄ , FeF ₂ , FeF ₃	32					
K-Fe-F								
5	KFeF ₄	K ₂ FeF ₅ , FeF ₃	8					
6	K ₂ Fe ₂ F ₇	$K_4Fe_3F_{12}, FeF_2$	15					

7	$K_{0.6}FeF_3$	KFe_2F_6 , $K_4Fe_3F_{12}$, FeF_2	1
8	K _{0.25} FeF ₃	KFe ₂ F ₆ , FeF ₃	1
		NH ₄ -Fe-F	
9	$(NH_4)_2Fe_2F_7$	NH ₄ Fe ₂ F ₆ , NH ₄ F	1
10	$(NH_4)_{0.6}FeF_3$	NH ₄ Fe ₂ F ₆ , NH ₄ FeF ₃	14
11	(NH ₄) _{0.25} FeF ₃	NH ₄ Fe ₂ F ₆ , FeF ₃	18

References:

- Hung, I.; Zhou, L.; Pourpoint, F.; Grey, C. P.; Gan, Z. Isotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz. *J. Am. Chem. Soc.* 2012, *134* (4), 1898–1901. https://doi.org/10.1021/ja209600m.
- Bernal, F. L. M.; Gonano, B.; Lundvall, F.; Wragg, D. S.; Fjellv+Ñg, H.; Veillon, F.;
 Séawiäski, W. A.; Fjellvng, Ÿ. S. Canted Antiferromagnetism in High-Purity NaFeF3
 Prepared by a Novel Wet-Chemical Synthesis Method. *Phys. Rev. Mater.* 2020, *4* (11), 1–8. https://doi.org/10.1103/PhysRevMaterials.4.114412.
- (3) Knox, K. Perovskite-like Fluorides. I. Structures of KMnF 3, KFeF 3, KNiF 3 and KZnF
 3. Crystal Field Effects in the Series and in KCrF 3 and KCuF 3. *Acta Crystallogr.* 1961, 14 (6), 583–585. https://doi.org/10.1107/s0365110x61001868.
- Ito, A.; Morimoto, S. Mössbauer Study of Magnetic Properties of KFeF 3. J. Phys. Soc. Japan 1975, 39 (4), 884–891. https://doi.org/10.1143/JPSJ.39.884.