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Rate performance of several applications, such as batteries, fuel cells, and electrochemical sensors, is
exponentially dependent on the ionic migration barrier (E,,,) within solids, a difficult-to-estimate
quantity. Previous approaches to identify materials with low E,,, have often relied on imprecise
descriptors or rules-of-thumb. Here, we present a graph-neural-network-based architecture that
leverages principles of transfer learning to efficiently and accurately predict E,,, across a variety of
materials. We use a model (labeled MPT) that has been simultaneously pre-trained on seven bulk
properties, introduce architectural modifications to build inductive bias on different migration
pathways in a structure, and subsequently fine-tune (FT) on a manually-curated, literature-derived,
first-principles computational dataset of 619 E,,, values. Importantly, our best-performing FT model
(labeled MODEL-3, based on test set scores) demonstrates substantially better accuracy compared to
classical machine learning methods, graph models trained from scratch, and a universal machine
learned interatomic potential, with a R? score and a mean absolute error of 0.703 + 0.109 and 0.261 =

0.034 eV, respectively, on the test set and is able to classify ‘good’ ionic conductors with an 80%
accuracy. Thus, our work demonstrates the effective use of FT strategies and MPT architectural
modifications to predict E,,,, and can be extended to make predictions on other data-scarce material

properties.

Tonic conductivity (o) or diffusivity (D) or mobility () in a crystalline solid is
an important material property that governs the rate performance of several
applications, such as rechargeable batteries, fuel cells, and electrochemical
sensors. In the case of secondary batteries, the core operating principle
involves the reversible movement of mobile ions (such as Li*, Na*, K,
Mg**, or Ca’") between electrode materials that are typically intercalation
compounds and across an electronically-insulating electrolyte, which
facilitates electron exchange via the external circuit'. Thus, the rate perfor-
mance of a given rechargeable battery is often limited by the ionic mobility of
the electroactive ion in the intercalation electrode and/or in the solid elec-
trolyte (in case of all-solid-state batteries)*’. Thus, significant improvements
in rate performance of batteries (and other electrochemical applications)
can be effected by the use of novel materials* that exhibit high y of the
electroactive ion, indicating that computational or experimental screening
strategies’ need to predict /07D swiftly and accurately for the identification
of candidate materials.

Mathematically, ¢ and o are directly proportional to one another, with

ousually described by the Nernst-Einstein equation (¢ = ngfT(x))) where g, x,

kg, and T are the charge and concentration of the intercalant, the Boltzmann
constant, and temperature, respectively. D(x) relates the diffusive flux to the
concentration gradient via Fick’s first law®, and can be expressed as D(x) =
Dy(x)0(x). Dyis the jump diffusion coefficient that captures the rate of atomic
migrations and the correlations among atomic hops, and 8 is the thermo-
dynamic factor that accounts for any non-ideal interactions between the
intercalant and the diffusion carrier (typically vacancies). Thus, macro-
scopic diffusion of ions in a solid (D) is directly related to microscopic
atomic hops (D;) that happen within the crystal structure. In the case of ideal
interactions between the intercalant and vacancies, where each atomic hop
exhibits an identical frequency (or probability) of occurrence, D simplifies to
Eq. (1)".

D=fga v exp(—kE—mT) (1)
B

fis the correlation factor, g is the geometric factor that describes the diffusion
channel connectivity, a is the hop distance, v is the pre-factor that depends
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on vibrational frequencies of atoms, and E,, is the activation barrier
associated with the atomic migration. Note that the x dependence of D can
arise from x dependence of f, g, 4, v, and/or E,,,. Importantly, E,,, is the most
dominant factor that determines D (and by extension o/u), given that it has
an exponential influence on D, and hence becomes the most crucial quantity
to calculate/measure for rate performance estimation in any application.
Also, the exponential relationship in Eq. (1) is an empirical observation and
isnota priori guaranteed to hold for a given system, particularly over a broad
temperature range’.

Considering reasonable battery performance metrics, such as charge/
discharge at a rate of C/2 and an operating temperature of 300 K, the
tolerable limit for E,,, in electrodes lies between 525 meV for micron-sized
particles and 650 meV for nano-sized particles’. Minimizing E,), is essential
for high u, prompting efforts to identify factors that lower E,,,. Previously
proposed design principles for selecting structures with high y include
avoiding preferred coordination environments, minimizing coordination
number changes during migration, and maximizing volume per anion with
non-close-packed structures™"’. However, these principles are not uni-
versally applicable, especially for large intercalants, prompting Lu et al."' to
refine the strategies for Ca’" that emphasized optimal transition state geo-
metry not containing face-sharing polyhedra and having higher degrees of
freedom. Moreover, close-packed structures (i.e., structures without a high
volume per anion) have also demonstrated high o, as with the case of Mg**
in spinel chalcogenides'”™". Other structural descriptors that have been
identified to correlate with E,,, in solids, such as spinels, garnets, and olivines,
include migrating ion-anion distances'’, and the ‘migration number’ '’ that
encompasses electronegativities, oxidation states, and ionic radii. Never-
theless, despite advancements in understanding factors that influence y (or
E,,) in specific systems, a generalized rule or model that is applicable across a
wide variety of solid systems'® remains elusive so far.

For models predicting E,, to be practically useful, the models have to
make predictions that are as accurate as and are significantly faster than
experimental measurements or computational techniques. Additionally, for
constructing generalizable models for E,, predictions, a reliable dataset of
measured or calculated E,, across a wide variety of systems is necessary. In
terms of measuring E,,, direct experimental techniques such as electro-
chemical impedance spectroscopy (EIS'*”’), galvanostatic intermittent
titration technique® ~**, and nuclear magnetic resonance based methods™
are typically used. However, these techniques can be resource-intensive and
contain challenges, such as (lack of) sensitivity to the short time and length
scales of ionic migration, dependence on sample preparation or measure-
ment conditions, and specific equipment requirements (e.g., inert ion-
blocking electrodes in EIS). Thus, generating E,,, dataset(s) based solely on
experimental measurements can be challenging and models that exhibit
swift and accurate E,, predictions can certainly be used for targeted
experimentation on select materials.

On the other hand, computational strategies to estimate E,, include
bond valence (BV***) analysis, density functional theory (DFT**")
based nudged elastic band (NEB™”) calculations and molecular
dynamics (MD***) simulations, with each technique exhibiting its own
advantages and challenges. For example, BV analysis is computationally
efficient but is error-prone in estimating E,, due to its empirical nature
involving static structures and ionic bond models®”**. Note that the E,),
from DFT-NEB calculations are at 0 K with fixed lattice parameters and
represent the internal-energy barrier that neglects (p — V) contributions,
which are assumed to be small in solids.”*’ Experimental measurements
typically yield an enthalpic barrier of migration (h,,), signifying that we
approximate calculated E,, often as measured h,, in solids. A brief dis-
cussion on this assumption is described in Section S1 of the Supporting
Information (SI). Ab initio MD simulations enable direct estimation of
D but are computationally intractable for sampling dynamics in large
systems and over nanosecond time scales, thereby limiting their
accuracy*'. While machine learned interatomic potentials (MLIPs*™*)
can enable MD simulations to sample over larger length and longer time
scales than ab initio MD, the potentials have to be nominally fine-tuned

for specific chemistries for accurate D or E,, estimation, thus resulting in
higher computational costs.

DFT-NEB calculations offer accurate and direct E,, estimation by
modeling the minimum energy path (MEP) of atomic migration using an
elastic band of intermediate images connected by spring forces, which is
subsequently relaxed using DFT. While the accuracy of DFT-NEB can
depend on the selected exchange-correlation (XC) functional, the compu-
tational cost scales with system size, and convergence to the MEP can be
problematic”. Efforts to accelerate NEB calculations include improved path
initialization™ and quicker energy estimation using algorithms like ‘Path-
finder’ and ‘ApproxNeb’ '**, with possible reductions in accuracy. Never-
theless, computationally demanding DFT-NEB calculations remain the
state-of-the-art for accurate E,, estimations in solids, making the case for
models that can accurately and swiftly predict E,,,.

Machine learning (ML) models have been used in the recent past to
understand trends in E,, in specific systems. For example, Jalem et al.*
developed a neural network model with features from both DFT relaxed
structures and literature to predict DFT-NEB calculated E,, across 72
olivine-based structures. Apart from identifying structural descriptors that
primarily correlated with E,,,, Jalem et al.’s model exhibited a validation R*
score and root mean squared error (RMSE) of 0.978 and 0.0619¢V,
respectively. As a follow-up work, Jalem et al.”’ used Bayesian optimization
to identify compositions with low E,, (<0.3 eV) within the tavorite frame-
work by training on 317 DFT-NEB calculated E,,,, with the model exhibiting
a ~90% success rate and some knowledge transfer from Li-based compo-
sitions to Na. Sendek et al.” used logistic regression on experimental o data
available on ~40 materials that were down-selected from a screening process
beginning with 12,831 Li-containing compounds from the materials project
(MP*") and reported a X-randomization performance metric of 0.59, indi-
cating statistical significance in predicting high o. Kim et al.”” investigated
anti-perovskites as solid-state electrolytes by employing various ML-based
regression models that were trained on ~608 DFT-NEB calculated E,,, using
44 physical, chemical, electrical, and geometric descriptors, with their best
model achieving a RMSE of 0.71 eV.

Recently, Laskowski et al.”* developed a semi-supervised model using a
literature-curated database of 1346 compounds, subsequently employing
BVSE and DFT-NEB calculations to downselect promising candidates.
Utilizing universal machine learned interatomic potentials, Maevskiy et al.”*
and Choi et al.” used different strategies to tune the ‘M3GNet’ *’ potential to
screen solid electrolytes based on MD-simulated E,,. Dembitsky et al.*®
benchmarked ML models for migration barrier prediction using their large-
scale LiTraj dataset, comprising over 122,000 BVSE and ~2000 high-fidelity
DFT-NEB calculations. While classical models excelled on the smaller DFT
dataset (R* = 0.80), the study also demonstrated that fine-tuning universal
interatomic potentials like multi-atomic cluster expansion (MACE"**) and
SevenNet™ achieved high accuracy (MAE of 0.10-0.11 eV) for challenging
transition metal systems.

A primary challenge for current ML models in materials science,
especially for E,, predictions, is their limited generalizability. This often
stems from their development on training datasets constrained to specific
structural families or chemical spaces, leading to a degradation in predictive
accuracy when extrapolated to out-of-domain materials. While some large-
scale screening efforts have aimed to address this, they have typically relied
on empirical methods, such as the BVSE approximation or pre-trained
MLIPs, rather than being grounded exclusively in first-principles calcula-
tions. Thus, our aim in this work is to construct models that are generalizable
across a wide range of materials, whose E,,, have been rigorously calculated
using DFT-NEB.

An important challenge in developing ML models for materials science
is the scarcity of data on critical material properties, such as E,,,. For example,
graph neural networks (GNNs) ideally require datasets with ~10* data
points to perform optimally”, while typical material science datasets often
contain only a few thousand or fewer data points. Transfer learning (TL),
which involves pre-training (PT) a model on a larger (material property)
dataset and subsequently fine-tuning (FT) on a smaller (target property)
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dataset, offers a promising solution to this data insufficiency”'. Indeed, we
have demonstrated in our previous work the effectiveness of various PT/FT
strategies using the atomistic line graph neural network (ALIGNN®) as the
base architecture, showing that FT models consistently outperform models
trained from scratch (i.e., without any PT) across seven diverse bulk material
properties”. Furthermore, we developed a multi-property pre-trained
(MPT) model, which was trained simultaneously on all seven bulk material
properties and exhibited better performance than pair-wise PT/FT models
on a completely out-of-domain property on 2D materials™. Thus, principles
of TL and our constructed MPT model can be leveraged for E,,, predictions.

In this work, we use TL and our MPT framework to construct gen-
eralizable models for E,, predictions across a wide range of structural
groups, compositions, chemistries, and migration pathways. We develop
four different architectural modifications for FT the MPT model, by con-
sidering either the initial and final positions of the migrating ion or an
interpolated band of images that represents the migration as inputs.
Additionally, we explore the utility of adding attention layers to increase the
model’s sensitivity to critical parameters that govern E,,,. For training and
testing, we employ a manually-curated DFT-NEB E,, data obtained from
literature, developed as a parallel work®. Our dataset contains 619 distinct
migration pathways that span 58 different space groups and diverse che-
mistries and compositions.

Notably, we observe our best-performing FT model, named ‘MODEL-
3, to exhibit R* scores and mean absolute errors (MAEs) of 0.703 + 0.109
and 0.261 + 0.034 eV, respectively, on the test set. MODEL-3 outperforms
both scratch GNN and classical ensemble ML models, by atleast 77.53% on
test R* scores and 17.92-44.13% on test MAEs. Importantly, MODEL-3
displays the ability to generalize across different migration pathways,
migrating ion compositions, and varying anion or transition metal che-
mistries within a structural framework. We find MODEL-3 to be more
accurate (by 280% on test R* and 23.24% on test MAE) compared to E,,,
estimated by a universal MLIP, namely the MACE. Also, as a classifier,
MODEL-3 achieves an 80% accuracy and an 82.8% precision in identifying
‘good’ conductors (ie., structures with E,, < 0.65eV). The FT model
architectures developed in this work illustrate the adaptability of the MPT
model to predict other data-scarce material properties. Finally, our best-
performing model should be highly useful in rapidly identifying materials
with good p, which can be subsequently validated with DFT-NEB calcula-
tions or experiments, and eventually be used for batteries and other
applications.

Results

Data description

Here, we use a curated dataset comprising 619 distinct migration pathways
(see Fig. 4), across various ionic compounds that have been studied as
electrode or solid electrolyte materials for batteries, and the corresponding
E,, derived from DFT-NEB calculations. The overall dataset is available at
ref. 64, as part of our additional work. The dataset encompasses both dis-
charged (71.4%) and charged states (23.6%) of the electrodes, with inter-
mediate compositions (5%) included in select instances. Note that we refer
to electrode materials with high intercalant compositions (e.g., x ~ 1 in
Li,CoO,) as the corresponding discharged states, while low intercalant
compositions (x ~ 0 in Li,CoO,) constitute charged states.

The majority (88.12%) of the collected E,,, values were calculated using
the generalized gradient approximation (GGA)* as the XC functional, with
other datapoints calculated with the Hubbard U corrected version of GGA
(or GGA + U), the strongly constrained and appropriately normed” func-
tional, and the localized density approximation™®. E,,, values were initially
gathered from published literature, and the corresponding crystal structures
were obtained from the MP or the inorganic crystal structure database”. In
cases where structures were unavailable, ground state (GS) structures were
generated from appropriate parent structures using reference lattice scaling”"
to modify the lattice parameters and/or by enumerating possible ordered
configurations via the OrderDisorderedStructureTransformation class
within the pymatgen package’, and subsequent relaxations with DFT*.

The dataset spans 58 distinct space groups, categorized into 27 struc-
tural groups, with migration barriers ranging from 0.03 to 8.77 eV. Pro-
minent structural groups in our dataset include spinels, layered, olivines,
tavorites, phosphates, weberites, and NaSICONs. As much as possible, we
used structural groups that are quite common in the battery literature.
Layered structures constitute the largest portion of the dataset, with 98
entries, followed by spinel chalcogenides, phosphates, and the general class
of oxides. Other structural groups, such as alluaudites, Prussian blue ana-
logs, and carbonates, are also represented, albeit with fewer data points.
Lithium (Li)-based intercalants account for approximately 28.3% of the
dataset, followed by calcium (Ca), sodium (Na), magnesium (Mg), potas-
sium (K), zinc (Zn), strontium (Sr), aluminum (Al), and rubidium (Rb).
Further details regarding the complete dataset generation, distribution of
datapoints, and comprehensive descriptions of each datapoint can be found
in ref. 64. The split of the dataset into train and test subsets for model
training and evaluation and the data distribution in each subset is described
in the “Methods” section and visualized in Fig. 4.

Architectural modifications
Specific architectural modifications were necessary to adapt and FT our
previously developed MPT model® for the prediction of E,,,. A key objective
of our final trained model is that it should be able to distinguish multiple
migration pathways within the same crystal structure, since that is quite
typical in ionic solids. A classic example of a structure with multiple
migration pathways is the layered-Li,CoO,, where the Li migration along Li
layers is significantly faster compared to a Li migration across the Co layers.
Thus, distinguishing multiple migration pathways requires that the model
be provided an inductive bias on the direction of motion of the migrating
ion. We provided the directional information by either considering both
initial and final configurations along the migration pathway as inputs to the
modified MPT model or in the form of a set of interpolated images (i.e., a
band) between the initial and final images as an input. While including the
initial and final configurations only accounts for the direction of motion, the
band input also includes partial information on the transition state
geometry.

Additionally, we varied the number of convolutions performed during
FT, and also added attention-based pooling mechanisms to refine the
embedding of the local geometries around the migration path. These
modifications led to four different FT model architectures, namely
MODEL-1 (orange lines), MODEL-2 (green), MODEL-3 (blue), and
MODEL-4 (magenta), as illustrated in Fig. 1a. Each model uses either one or
two copies of the MPT model and the solid (dashed) lines in Fig. 1a indicate
cases where four (one) convolutions are performed during FT. Briefly,
MODEL-1 includes two MPT instances and takes the initial and final
configurations as inputs and pools the output of both instances (via addi-
tion, subtraction or concatenation) before E,, predictions. MODEL-2 is
similar to MODEL-1 but takes in a difference vector ("delta”) of embeddings
between the initial and final configurations and concatenates the delta to the
initial configuration embeddings. MODEL-3 is a single MPT instance that
takes the interpolated band as the input. MODEL-4 builds upon MODEL-3
by adding attention blocks to two MPT instances, one that takes the full
structure with the interpolated band and another that takes a sub-graph that
focusses on the local environment of the band. Detailed descriptions of all
FT model architectures, including scratch models, are provided in the
“Methods” section.

Performance of classical and scratch models

Figure 1b illustrates the R* scores (1—R* is plotted for better clarity) and
MAE:s for both training (solid bars) and test (hashed bars) datasets for
different models, including classical ML models, scratch models (SCR), FT
models, and DFT-NEB calculated E,,, using a universal MLIP (denoted as
MACE-RELAX). Blue (pink) bars and the left (right) y-axis values represent
the R* scores (MAEs in eV). For models with multiple scenarios, the best-
performing model scores are selected for the plot. For example, MODEL-1
has three different scenarios depending on whether the final set of
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Fig. 1 | Modified MPT architectures used for FT and train/test scores of different
models. a The four different modified MPT architectures explored in this work,
namely MODEL-1 (orange lines), MODEL-2 (green), MODEL-3 (blue), and
MODEL-4 (magenta). Solid (dashed) input/output lines correspond to four (one)
convolutions performed on the MPT model. b 1 —R* scores and MAEs for all models.

The left (blue bars) and right (pink bars) y-axis values represent 1—R’ scores and
MAEs (in eV). Solid and hashed bars denote the train and test scores, respectively.
Error bars on the test metrics for the PT models are derived using a bootstrap
analysis.

embeddings from the two MPT instances are added, subtracted, or con-
catenated (CC) and Fig. 1b displays the scores for the MODEL-1-CC, which
exhibits the best performance. The magnitude of the scores for all the
models are tabulated in Table S5 of the SI. A model’s performance is con-
sidered good if it achieves both a high R* score and a low MAE, which
implies that lower (smaller) bars in Fig. 1b indicate better performance in
terms of both R* and MAE.

Among the classical ML approaches, namely random forest regression
(RFR) and gradient boosted regression (GBR), we observe RER to outper-
form GBR on the test data even though GBR has better training scores,
indicating that the GBR model was likely overfit. Importantly, our scratch
models (SCR-CC in Fig. 1b) perform inferior in comparison to the classical
models in terms of both training and test scores. Among the scratch models,
the model where the embeddings of the initial and final configurations were
subtracted from each other (SCRATCH-SUB) exhibited the worst perfor-
mance with highly negative R* scores, which is mainly due to the compo-
nents of the embedding vector tending to zero after subtraction, thus failing
to capture the small differences between the initial and final configurations.
On the other hand, adding or concatenating the embedding vectors in
scratch models offered better performance than SCRATCH-SUB.

Performance of TL models

Comparing the SCR-CC model with the FT MODEL-1 architecture, we find
that TL does help in improving the performance of the graph-based model
compared to scratch, with MODEL-1-CC showing a 29.3% decrease in test
MAE compared to SCR-CC. However, MODEL-1-CC’s performance is still
poorer in comparison to classical ML models, with a 19.2% higher test MAE
than RFR (Fig. 1b). The likely reasons for the inferior performance of
MODEL-1-CC is its poor training scores, which can be attributed to
MODEL-1-CC’s failure to distinguish multiple pathways within the same
structure and eventually predicting identical E,, for different paths. Speci-
fically, MODEL-1-CC failed to distinguish the distinct migration pathways
in ~81.1% of systems that had multiple pathways in our training dataset.
Thus, MODEL-1-CC is unable to utilize the initial and final configuration
inputs to infer differences in the direction of migration. To verify that the
poor learning of multiple pathways is the main bottleneck in the perfor-
mance of MODEL-1-CC, we trained a variant of the model, MODEL-1-CC-
SINGLE-PATH, using only a single migration pathway per structure in our
train/test datasets. As anticipated, removing multiple pathways resulted in
significantly improved training scores and enhanced test performance (test
R% 0.603, test MAE: 0.249, see Table S5). Thus, further modifications to the
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graph network architecture, going beyond MODEL-1-CC, are needed if
models are to distinguish multiple pathways within the same structure.

To better capture the distinctions among multiple migration pathways,
we modified the MODEL-1 architecture to generate MODEL-2, which
emphasized the differences between the initial and final configurations via
the calculation of the delta vector. Indeed, the proportion of datasets with
multiple migration pathways that are not classified as distinct reduced to
71.1% within the training dataset with MODEL-2 compared to MODEL-1
(81.1%). However, MODEL-2 exhibited only an improvement of 3.02% and
19.18% in terms of training and test R* scores, with a corresponding increase
in test MAE of 0.8%, compared to MODEL-1. Importantly, MODEL-2’s
performance remains poorer than classical ML models, suggesting that even
better modifications to the graph network are necessary.

To improve the ability of the graph network to identify different
migration directions, we generated MODEL-3, which is a standard MPT
model architecture but with the input structures augmented with positional
data from three interpolated images alongside the initial and final sites.
Including the interpolated images creates a band representation, or a guess
of the pathway along which the ion is likely to migrate, with some infor-
mation of the transition state. Including the band representation sig-
nificantly improved the performance of the MPT model after FT, with
MODEL-3 posting a 77.52% increase in test R* score (0.703) and a 17.92%
decrease in test MAE (0.261 eV) compared to the RFR model (Fig. 1b).
Thus, incorporating information on the band provides a clear intuitive bias
to the graph model on the direction of motion, and the model is able to
distinguish different pathways within the same structure, resulting in a clear
performance improvement on the test set. Notably, only 27.2% of the
training datapoints corresponding to multiple migration pathways had their
absolute errors greater than 0.1 eV with MODEL-3.

In an effort to enhance the emphasis on interpolated images, we
integrated attention layers, a fundamental component of transformer
architectures widely utilized in large language models™”* and created
MODEL-4. Attention blocks facilitate the creation of context-aware
embeddings, significantly improving tasks such as text generation and
translation in language models. We adapted the attention architecture by
employing atom embeddings as inputs to generate query, key, and value
vectors, thereby enabling an understanding of atomic interactions or the
“attention” between atoms within the structure. In principle, including
attention should heighten the model’s sensitivity to critical features that
influence E,, predictions, since MODEL-4 leverages embeddings obtained
directly from the attention layers. Indeed, MODEL-4 achieves superior test
R? scores and MAEs compared to RER (Fig. 1b) and is able to distinguish
multiple migration pathways within the same structure, similar to MODEL-
3. However, MODEL-4’s test R” scores are ~9.82% lower and its train MAEs
are ~101.18% higher than those of MODEL-3. The test MAE values for
MODEL-3 and MODEL-4 are quite similar (6.13% deviation). The stan-
dardized and normalized validation error for MODEL-3 is also lower, at
0.067 eV, than MODEL-4 (at 0.077 eV), implying that the choice of the best-
performing model does not change either using validation set or test set
performance metrics. Given that the test set performance has been used to
select the best performing model in this work, due to data scarcity that
disables the use of a truly independent test set, our model performance
metrics might be potentially biased by the model selection process. As more
E,, data becomes available, it should be possible to test the best model(s) on
truly independent test data.

To quantify the uncertainty in the model predictions, we performed a
bootstrap analysis on the test set. Specifically, we generated 1000 bootstrap
samples, each of size 60, by random sampling of the test set with replace-
ment, and evaluated all models considered. The resulting standard errors on
the calculated R scores and MAEs are displayed as error bars in Fig. 1b and
are compiled in Table S5 of the SI. For clarify, we display error bars only for
the PT models in Fig. 1b. Importantly, the bootstrap analysis reveals similar
levels of uncertainty for the two top-performing models in our work, namely
MODEL-3 and MODEL-4, while MODEL-3 exhibits a 12.8% lower stan-
dard error in its MAE compared to MODEL-4. Thus, we find that adding

attention layers to MODEL-3 is not necessarily a helpful addition to
improve performance, with MODEL-3 being the best FT model we
have so far.

Given that our dataset is new, we benchmark our models against a
universal MLIP (MACE-MP-0""**), which was used as the energy and force
evaluator in NEB calculations (Fig. 1b). Since the initial and final config-
urations in our dataset were predominantly unrelaxed structures (with
DFT), we considered NEB calculations with MACE, both including initial/
final configuration relaxation (MACE-RELAX in Fig. 1b) and excluding any
relaxation. Unsurprisingly, the MACE-NEB calculations with initial/final
configuration relaxation significantly outperformed the calculations with-
out any relaxations, with R* scores and MAEs of 0.185 and 0.340 eV on the
test dataset, respectively.

Despite a test MAE that is only 30% higher than MODEL-3, MACE-
RELAX had a notably lower R* score, indicating its inability to capture
qualitative trends in E,,, effectively. However, the relatively low R’ score is
primarily due to a single outlier in MACE-RELAX predictions, where the
predicted E,,, is higher than the target value by 3.64 eV. Upon removing this
outlier, MACE-RELAX’s performance improves with the resultant R* (0.65)
and MAE (0.28 eV) values being closer to MODEL-3’s performance.
Additionally, while MACE-RELAX is able to distinguish different pathways
in a structure, the absolute errors of MACE-RELAX predictions in such
cases are significantly higher than MODEL-3. For example, in Na-
orthosilicates (Na,FeSiO4) and Ca-weberites (Ca,;Ni,F;), the absolute
errors in identifying multiple pathways varied between 1-2.5eV with
MACE-RELAX compared to 0.003-0.17 eV with MODEL-3. Thus, we find
our FT MODEL-3 to be better at both quantitative and qualitative predic-
tions of E,,, compared to MACE-RELAX. This analysis also underscores the
importance of using both R* and MAE metrics to comprehensively assess a
model’s performance.

Predictions vs. target

Panels a and b of Fig. 2 depict the comparison between the predicted and the
target E,, values for the training and test datasets, respectively, for our best-
performing model, MODEL-3. The prediction versus target parity plots for
other models are compiled in Figs. S3 and $4 of the SI. The accompanying
histograms along the x- and y-axis in Fig. 2 margins show the distributions
of target and predicted E,,, values. Both training and test R* scores and MAEs
are indicated within the panels. Although the frequency of under- and over-
predictions with MODEL-3 in the training set is similar, under-predictions
tend to have larger absolute errors compared to over-predictions. Specifi-
cally, 12 out of 19 datapoints with absolute errors greater than 0.5 eV are
under-predicted by MODEL-3, averaging an error of approximately
0.99 eV. The highest under-prediction error occurs in oxide-CaCu,O3, with
a predicted E,,, of 1.82 eV against a target of 4.14 eV. Notably, 11 of these 12
under-predicted datapoints have target E,, exceeding 1.5 eV, except for
LiFeBOs (space group: P21/c, path: 4) with a target E,, of 1.16 eV. Among
the 12 under-predictions, five cases involve oxides and borates.

The inset histogram in Fig. 2b illustrates the frequency distribution
of absolute errors in the test dataset by MODEL-3. Importantly, ~32% of
the test datapoints predicted by MODEL-3 have an absolute error below
0.1eV, representing high accuracy in the predictions of MODEL-3.
Additionally, 38% fall within a moderate accuracy range (0.1-0.3 eV
absolute error), while 30% exceed an absolute error of 0.3 eV, indicating
low accuracy. The lowest absolute error (<0.1eV) in the test dataset is
observed in the case of spinels and spinel chalcogenides, which con-
tribute about 16% of the training dataset and contain fairly typical
tetrahedral-octahedral-tetrahedral migration pathways”. Of the 18 test
datapoints with absolute errors greater than 0.3 eV, the average MAE
across the 18 datapoints is ~0.60 eV with 11 E,, values being under-
estimated by more than 0.5 eV by MODEL-3. The highest absolute error
in this group is observed for KNiF;, with a target E,, of 1.77 ¢V and an
under-prediction error of 1.19 eV, which may be due to the high levels of
distortions that the perovskite NiF; is subjected to as K* moves across the
structure and not captured in our model.
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The frequency of under- and over-predictions of E,,, across the four FT
models is similar (Fig. $3), except MODEL-2 that exhibits about 20% more
instances of over-prediction on average during training. Approximately
57% and 54.7% of training samples from MODEL-1 and MODEL-2,
respectively, achieve an absolute error below 0.1eV. In comparison,
MODEL-3 and MODEL-4 achieve significantly higher accuracy, with 81.6%
and 58.3% of their training samples that have an absolute error below 0.1 eV.
Additionally, samples with absolute errors equal to or exceeding 0.5 eV
constitute around 12% for MODEL-1 and 10% for MODEL-2, 3% for
MODEL-3, and 6% for MODEL-4, which explains the superior training
MAE observed in MODEL-3 (Fig. 2a). While these training statistics may
suggest that MODEL-3 and MODEL-4 are overfitting to the training
dataset, the fact that both models exhibit superior performance on the test
set (Figs. 2b and S3f) compared to MODEL-1 and MODEL-2 indicate that
models with band inputs do generalize better to predict E,, compared to
models that take only the initial and final configurations as input.

Distinguishing migration pathways
The ability of different models to distinguish multiple migration pathways
within the same structure is illustrated in Fig. 3a, which displays predictions
made among training datapoints. We selected representative systems
(LisOCl, Ca,Mn,0s, MgMnSiO,, and VOPO,, top x-axis of Fig. 3a) fea-
turing two or three distinct migration pathways (bottom x-axis) and
involving four different intercalants (Li, Ca, Mg, and Na) that are major
contributions to the dataset for this analysis. The y-axis in Fig. 3a represents
the E,, values in eV, with target values highlighted by horizontal black
dashed lines within each track. Note that the VOPQO, structure considered
for this analysis is its charged state with Na as the intercalant—hence the
notation 'VOPO,_Na’. The tracks are color-coded to differentiate among
the intercalants, with the FT models indicated by different colored symbols.
Data from Fig. 3a indicate that MODEL-1 (pink diamonds) con-
sistently predicts identical E,, across different pathways within the same
structure, for all systems, indicating MODEL-1s inability to distinguish
different paths. In contrast, MODEL-2 (blue triangles) shows variations in
predicted E,, across different pathways, albeit with substantial errors in its
predicted E,, versus the target. Thus, the inductive bias introduced in
MODEL-2 is able to distinguish pathways compared to MODEL-1 for the
systems in Fig. 3a. Similarly, MODEL-3 (green circles in Fig. 3a) and

MODEL-4 (orange squares) are able to distinguish different pathways as
well, indicating that band inputs are useful as tools to add inductive bias with
respect to the direction of migration. While MODEL-3 and MODEL-4
exhibit predicted E,, values that are closer to the target values, the data points
in Fig. 3a are within the training set and hence not a direct reflection of the
generalizability of these models. Note that the test set does not contain
enough structures with multiple migration pathways to perform the above
analysis, restricting our choice to looking at training set predictions.

Influence of dataset size

To quantify the influence of dataset size during FT on the prediction
accuracies for the best-performing MODEL-3, we plot the train and test R*
scores and MAEs for three lower FT dataset sizes, namely 100, 200, and 400
in Fig. 3b. Note that 559 is the maximum training set size of our E,,, dataset,
while the test dataset remained the same for all training dataset sizes. The
notations used in the figure are identical to Fig. 1b. As expected, we observe
significant improvement in the test scores (both R> and MAE) as the training
dataset size increases. Also, the model that uses 559 training datapoints
offers the best train as well as test scores. The significant disparity in the train
and test scores for models trained with lower dataset sizes (especially at 100
and 200 datapoints in Fig. 3b) indicates the tendency of the model archi-
tecture to overfit at very small train dataset sizes.

Generalization across pathway, composition, and chemistry

To better understand the generalization abilities of MODEL-3 and its
possible use as a screening tool for battery applications and beyond, we
analyze its performance over three different scenarios that are encountered
in the train/test datasets (see Fig. 3¢). Scenario A involves structures where
one migration pathway is in the test set, while the remaining pathway(s) are
in the train set, quantifying the model’s ability to generalize across different
migration pathways. Scenario B consists of systems where the charged (or
discharged) composition appears in the train set, while the corresponding
discharged (charged) state appears in the test set, signifying the model’s
ability to generalize across compositions of an intercalant within a host
framework. Scenario C determines the model’s generalizability across dif-
ferent chemistries since it encompasses instances where either the inter-
calating ion or the host structure’s anion/cation in the test set differs from
what the model has seen in the train set.
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¢ Violin plot signifying the distribution of absolute errors among the test datapoints
under scenarios A (blue), B (orange), and C (green). d Confusion matrix quantifying
the classification performance of MODEL-3 in the train (upper blue triangles) and
test (lower pink) datasets.

Figure 3c plots the absolute error (in V) in the E,, predictions on the
test set for the three scenarios as violins. The lower and top edges of the
violins correspond to the range of the absolute error for each scenario. The
empty circle is the mean, and the solid black line is the median of the
distribution. Scenarios B and C have similar mean (~0.23 eV) and median
(~0.14eV) absolute errors that are lower than Scenario A (~0.29 and
0.20 eV), and have a larger number of data points with low absolute errors
(<0.1eV). This indicates that MODEL-3 generalizes better across inter-
calant composition and chemistry compared to migration pathways.
Additionally, prediction confidence is highest for scenario C (followed by
scenarios B and A), as 68% of systems in scenario C have a test MAE of
0.11eV (ie, in the high/moderate accuracy range). Thus, our analysis
suggests that MODEL-3 can offer robust predictions for a given system
when it has seen structurally (not necessarily compositionally or chemically)
similar systems during training, which can be quite useful when used as a
screening tool. Importantly, our analysis indicates that distinguishing
directionality of migration within the same structure is perhaps the hardest
task for the graph network architectures considered in this work, high-
lighting the role of difficult-to-describe local coordination environments in
differentiating E,,,.

Classification metrics

To examine if MODEL-3 can be used as a screening tool to classify struc-
tures as good (E,,, < 0.65 eV) or bad (E,,, > 0.65 eV) ionic conductors, instead
of being used as a ’regression’ tool to predict absolute E,,,, we segregated the
datapoints that fall into the above two categories in both the train and test

sets. Figure 3d illustrates the confusion matrix, which tabulates MODEL-3’s
performance in identifying a good or a bad conductor in the train (lower
blue triangles) and the test (upper pink) sets, respectively. The overall
accuracy of the test (train) predictions is 80.0% (93.4%), which represents
the number of correct predictions in the overall test (train) samples, high-
lighting the potential use of MODEL-3 as a classifier of structures as good/
bad conductors. The sensitivity (recall) or the ability of the model to classify
actual good and bad conductors in the test set is 77.4% and 82.8%,
respectively. Notably, the precision in classifying good conductors is higher
(82.8%) than that of bad conductors (77.4%), implying that statistically
MODEL-3 is marginally less likely to falsely classify a structure to be a good
conductor than a bad conductor. Note that the threshold criterion in
identifying good and bad conductors in this analysis (E,, =0.65¢eV) is
arbitrary, and using a different threshold will modify the confusion matrix.

Discussion

For the accurate estimation of E,, in ionic solids, we present an MPT
model that has been modified and FT specifically for precise E,, pre-
dictions over a wide range of crystal structures and migration path-
ways. Via modifications to the pre-trained MPT model to introduce
inductive bias on the directionality of a migration path, we FT four
different MPT model architectures on a curated dataset of 619 DFT-
NEB-calculated E,, values obtained from literature. Importantly, we
find our MODEL-3 architecture, which takes a band input, to be the
best performing, with test R* and MAE of 0.703 + 0.109 and 0.261 +
0.034 eV, respectively. We observe MODEL-3 to not only distinguish
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multiple pathways in a given structure, but also generalize well across
intercalant chemistries and compositions. Furthermore, we find that
MODEL-3 can be used as a classification tool, with an accuracy rate of
80% on classifying a structure as a good (E,, < 0.65 eV) or a bad (E,, >
0.65eV) conductor. Thus, our best-performing model should be a
useful tool in the screening of materials with high u for battery appli-
cations and beyond.

The performance of FT models can be further improved by including a
larger number of data points in our dataset, which will require more sys-
tematic DFT-NEB calculations. Note that we expect our FT models to
outperform scratch models with additional data, given that the FT models
that are trained with fewer data points (~200, Fig. 3b) exhibit similar per-
formance to scratch models trained on the full dataset (Fig. 1b), identical to
our observations in our previous work.” In addition to presenting MODEL-
3 for efficient E,, predictions, our study highlights possible strategies to
modify the MPT model for targeted FT on specific datasets. Our proposed
modifications (in Fig. la) allow (partially) capturing global and local
structural details that correlate directly with our target property (E,,). Thus,
similar modifications of our MPT model, with careful hyperparameter
optimization, can be used for FT on different target properties (such as
adsorption energies on surfaces, point defect formation energies, etc.”®) that
are difficult to calculate/measure.

The predictive accuracy of our best-performing MODEL-3 still
remains considerably lower than the R* scores and MAEs reported in our
previous work® for ‘simpler’ property predictions, such as formation energy
(R* and MAE of 0.774 and 0.089 eV). We attribute this lower accuracy to
three factors. First, the model may have inadequate level of inductive bias
resulting in insufficient learning of both local and global structural features
that determine E,,,. Second, the dataset may contain intrinsic noise, since all
E,, have not been calculated at the same level of theory and ensuring all E,,,
are at the same level of theory is beyond the scope of this work. Third,
ALIGNN only considers bond and angle embeddings and using more
advanced GNN architectures that consider many-body interactions may
improve prediction accuracy.

We observe that MODEL-3 seems to generalize more efficiently across
intercalant compositions and chemistries than it does across different
migration pathways within a specific structure (Fig. 3c), which can be
attributed to the following factors. First, the underlying migration pathway
can be identical (or similar) across different material compositions and
chemistries. For instance, spinel structures exhibit a consistent tetrahedral-
octahedral-tetrahedral migration path regardless of whether the composi-
tion is charged or discharged. Also, the migration path in spinels remains the
same irrespective of variations in the migrating ion, transition metal cation,
or the anion. Thus, if a model learns the key factors contributing to the E,,, in
one spinel structure, it may be able to generalize well on other spinels.
Indeed, we find MODEL-3’s prediction accuracy to be high for spinels
(absolute errors in E,, < 0.1 eV). Second, the magnitude of E,, can be
determined by local structural ‘motifs’ that define the migration pathway.
While global structural features like lattice parameters, composition, and
transition metal/anion identity determine the overall potential energy
landscape, local structural features (such as coordination number changes,
bond distances, rotation or distortion of polyhedral units) dictate the local’
energetics near a saddle point. Thus, limitations in the model’s ability to
capture the importance of such local features may affect its generalization
ability.

Surprisingly, the addition of attention blocks into MODEL-3 (resulting
in MODEL-4, Fig. 1a) did not yield a significant enhancement in the pre-
dictive accuracy (Fig. 1b). Our rationale for the inclusion of attention blocks
was to provide the model with a better understanding of the “context” or
importance of an atom or a local structural motif along the migration
pathway. This is why we employed the dual-input approach, where we used
the overall band and the sub-graph of the band’s local coordination envir-
onment. One possible reason for the ineffectiveness of attention blocks is the
limited size of our dataset. To verify that limited data is affecting the utility of
the attention blocks, we evaluated the performance of MODEL-4 across

different training data sizes, as shown in Fig. S5 of the SI. Indeed, we observe
that both the training and test scores improve consistently with increasing
training data size, possibly indicating that the attention blocks can play a
more significant role as the dataset size increases with more studies. Indeed,
attention layers have been demonstrated to be highly effective in large
language models trained on billions of tokens”, while we only have a total of
619 data points. However, it is also important to note that the magnitude of
improvement observed in the case of MODEL-3 with respect to the test
scores (Fig. 3b) is higher than MODEL-4, indicating that MODEL-3 will
likely be the best performing model for a few hundred more datapoints.
Nevertheless, as the scientific community contributes and makes the E,,
dataset more general, it will be worthwhile to revisit the utility of attention
blocks in extracting atom-level importance in material property predictions.

MACE-NEB-RELAX exhibited convergence difficulties in 68 sys-
tems, which may be potentially resolved by adjusting BFGS steps,
interpolation methods, or other hyperparameters. In certain cases,
convergence issues observed in MACE-NEB-NO-RELAX were
resolved upon relaxing the initial and final images. Across the complete
dataset, MACE-NEB-RELAX achieved an overall R? score of 0.10 and
an MAE of 0.36 eV, emphasizing MODEL-3’s superior accuracy.
Despite its low R* score, MACE-NEB-RELAX provided accurate E,,
estimations and reasonable geometries for intermediate images upon a
NEB calculation, particularly for ‘simple’ systems containing single
anions such as spinel oxides, spinel chalcogenides, post-spinels, and
layered structures. If convergence challenges can be mitigated, output
geometries from MACE-NEB-RELAX can serve as initial guesses for
DFT-NEB calculations, which may reduce computational costs.

In conclusion, precise E,, estimation is paramount for quantifying
ionic conductivity, a material property that is crucial in selecting materials
for batteries and other applications. Building upon our previous work
involving simultaneous PT of a graph-based neural network on seven bulk
material properties, we introduced four modifications into an MPT model
to build inductive bias on distinct migration pathways within a structure.
Subsequently, we FT each model using a curated dataset of 619 DFT-NEB-
calculated E,, values sourced from literature for precise E,, predictions
across various migration pathways, structural frameworks, and intercalant
chemistries. MODEL-3, which involved a single MPT model instance that
took a band configuration as input, demonstrated the best performance,
achieving an R* score 0of 0.703 + 0.109 and a MAE 0f 0.261 + 0.034 eV on the
test set and successfully identified multiple migration pathways within a
structure. Additionally, MODEL-3 showed an ability to generalize well
across intercalant compositions and chemistries. Furthermore, MODEL-3
effectively classified good (E,, <0.65eV) and bad (E,, > 0.65¢V) ionic
conductors, achieving 82.8% precision and 77.4% sensitivity for identifying
good conductors, highlighting its possible use in high-throughput screening
approaches to identify novel materials. Beyond improved E,, predictions,
our work demonstrates effective strategies for adapting and modifying PT
graph architectures to FT on material properties that are scarcely available,
thereby addressing a critical challenge of data insufficiency for ML in
materials science.

Methods
Data processing
The dataset generated from ref. 64 was split into the training and test set in
the ratio, 90:10. Our final test set consists of 60 datapoints across 21 distinct
structural groups, with the training set consisting of 559 datapoints across 27
groups. As established in our previous work®™, it is important to standardize
and normalize the target metric when we perform PT/FT on different
properties of varying scales and units. Thus, we standardized and normal-
ized the training and the test datasets using the training data statistics,
namely, the minimum, the maximum, the mean, and the standard
deviation.

Panels a and b of Fig. 4 show the stacked bar charts illustrating the
data distribution across the structural groups in the training and the test
datasets, respectively. The length of each color-coded stacked bar in each
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Fig. 4| Data distribution of training and test dataset. Distribution of the data in the
a train and b test datasets across different structural groups in the final dataset. The
colored stacked bar heights within each bar correspond to the contribution from

Structural Groups

different intercalant ions within that structural group. Note that alluaudite, maricite,
oxyfluorides, Prussian blue analogs, and silicates do not have any representation in
the test set.

panel of Fig. 4 represents a unique intercalant and is equal to the number
of datapoints with the corresponding intercalant in that structural
group. Our goal in splitting the train and test subsets was to generate a
structurally diverse test set with a focus on the most prevalent structural
groups in the training data, which ensures that model performance is
mainly assessed on groups with sufficient training data while also

including structural diversity. We carefully constructed the test dataset
by using the following strategies:

(1) Quasi-weighted distribution: the data distribution in the test set is
similar to the distribution of structural groups found in the training set,
ensuring a balanced evaluation.
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(2) Structural groups constituting between 1-2% of the complete
(train + test) dataset were represented by a single datapoint in the test
set. This prevents the model from being unfairly penalized due to
limited exposure to these groups during training. Examples of struc-
tural groups identified in this step include rutile, pyrophosphate, per-
ovskite, nitride, anti-perovskite, borates, and carbonates.

(3) The test set excluded structural groups with limited representation in
the overall dataset (i.e., <1%). We also excluded structural groups from
the test set with similar chemical compositions to those already present
in the test set but with different space groups, even if their contribution
to the overall dataset is slightly >1%. For example, we excluded silicates
that comprise ~1.2% of the overall dataset from the test set, because we
already included orthosilicates with similar composition but different
space groups in the test set. This strategy prioritizes more abundantand
structurally distinct groups in the test dataset, thus providing a robust
evaluation of our models.

(4) Random sampling within groups: once the desired percentage con-
tribution for each structural group was determined, datapoints were
randomly selected from the pool of available data to represent that
group in the test set.

Graph network model and pre-training

GNNs are well-suited for capturing the inherent atomic connectivity
within crystal structures, leading to improved property predictions. We
employed the ALIGNN architecture, a GNN variant, due to its
demonstrated ability to enhance the accuracy of material property pre-
dictions and to generalize on out-of-distribution tasks*”*. The ALIGNN
architecture, typically comprising seven layers, processes atom (X), bond
(Y), and bond-angle embeddings (Z) in layers 1, 2, and 3, respectively.
The X, Y, and Z embeddings serve as input to layers 4 and 5, which
perform edge-gated graph convolutions (E-GGC) multiple times”. The
outputs from layers 4 and 5 (typically referred to as the ALIGNN layers)
are pooled and subsequently passed through a multi-layer perceptron
(MLP) to generate a property prediction. Further details regarding the
construction of GNNs and the ALIGNN architecture are available in the
literature®***'. The default ALIGNN architecture that we employed and
the associated hyperparameters are compiled in Section S2 and Table S1
of the SI.

The generalized MPT model, as developed in our previous work®, was
trained on a comprehensive multi-property dataset. Specifically, the MPT
model was constructed by modifying the final MLP layer of the ALIGNN
architecture to include seven prediction heads, each corresponding to one of
the seven material properties, as illustrated in Fig. S2 of the SI. Each data
point (structure) is mapped to a one-hot encoded vector and a property
vector of dimension 7, where the former indicates the availability of a
specific property for the structure and the latter contains the corresponding
property values. We modified the loss function, as in Eq. (2), where y, and y,
represent the predicted and target values, i is the property index, N is the
number of properties, and §' is the entry of the one-hot encoded vector for
property i. This MPT model, which was trained simultaneously on all seven
properties”, was utilized as a PT model for FT on the target property (E,,) in
our work.

1< i i
ff:ﬁglyp—ytlé @)

Fine-tuning model architectures

Figure 1a illustrates the four model architectures explored in this work,
which are explained in detail below. We designed a model architecture
incorporating either one or two copies of the pre-trained MPT model,
since a given MPT (or ALIGNN) model can take only one structure as
an input. Each copy received either the initial, final, or an interpolated
band configuration of the migration pathway as input. During FT, the
model was allowed to re-train fully on the E,, dataset (i.e., all weights

and biases were allowed to be changed), with model parameter initi-
alizations coming from the MPT model, based on our observations of
optimal FT strategies in our previous work™. The outputs from the
(average) pooling or the attention layers of the MPT model(s) corre-
sponding to the initial/final/band configurations were combined using
various strategies (as explained below) before being passed to an MLP
for the final property (E,,) prediction. Thus, we constructed four dis-
tinct model configurations for learning E,,, and the associated hyper-
parameters for each configuration are provided in Section S2 and Table
S1 of the SI.

MODEL-1: pooled embedding combination. In this model archi-
tecture (follow the orange lines in Fig. 1a), we initialized two instances of
the MPT model, with one instance receiving the initial configuration of
the migration pathway as its input and another receiving the final
configuration. Following four E-GGC operations in the ALIGNN layers
and subsequent pooling, the resulting embeddings from the two MPT
model instances were either concatenated (CONCAT or CC), added
(ADD), or subtracted (SUB) from each other before passing to a fully
connected MLP with two hidden layers for E,,, prediction. For illustrative
purposes, empty circles within the cubic structures represent vacant sites
in Fig. 1a.

MODEL-2: delta vector concatenation. Similar to MODEL-1, this
model also uses two instances of the MPT model and is represented by
the green lines in Fig. 1a. The first embedding vector in this model was
the pooled output following four E-GGC operations in the MPT instance
that received the initial configuration as input. The second embedding
vector, which we term the difference vector or delta, was calculated by
subtracting the pooled vectors from two MPT models, with one instance
receiving the initial configuration and the other instance the final con-
figuration. Note that for calculating delta, the pooled vectors were
obtained after one E-GGC operation instead of the standard four (as
highlighted by dashed green lines instead of solid green lines in Fig. 1a).
Subsequently, the delta vector was concatenated with the first embed-
ding vector and the resultant vector passed to the final MLP for E,,
prediction.

MODEL-3: interpolated images. MODEL-3 is perhaps our simplest
model that uses only one instance of the pre-trained MPT model and is
indicated by blue lines in Fig. la. The input to the MPT model in this
architecture is the migration pathway, which we generate by a linear
interpolation of three images between the initial and final atomic con-
figurations. Note that linear interpolation is the typical technique utilized
to initialize the MEP in DFT-based NEB calculations. Thus, the input to
the MPT model is a single structure with initial, final, and three inter-
polated image sites being occupied by the migrating ion, with the
resultant pooled vector (after four E-GGC operations) passed to the MLP
for E,, prediction.

MODEL-4: interpolated images with attention. MODEL-4 builds upon
MODEL-3 by incorporating attention blocks to generate a refined pooled
representation of the ALIGNN outputs, as represented by the magenta
lines in Fig. 1a. The objective of the attention-based pooling is to identify
and prioritize the most influential nodes (atoms) of the structure for the
target variable (E,,). To calculate the attention scores (A), we learn pro-
jection matrices that map the graph’s atom embedding vectors (X) to its
corresponding query (Q), key (K), and value (V) representations, via
learnable weights (W). ReLU stands for the rectified linear unit activation
function.

Q. K,V = ReLU(XWx y)

Q and K are subject to batch matrix multiplication followed by processing
through hyperbolic tangent and SoftMax functions to generate A.
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Subsequently, A is multiplied with V to produce an aggregated value tensor
X".

A = SoftMax (tanh(QKT))

X = AV

The final output vector is the sum of the average-pooled X and the X’
calculated within the attention block.

X" = mean(X) + X’

In MODEL-4, we employed two different attention blocks, represented as
‘ATTENTION LAYER 1’ and ‘ATTENTION LAYER 2. The former is
applied on the embedding from the MPT model that takes the complete
structure with the interpolated images (or the main graph) as the input. The
latter takes only a sub-structure corresponding to the initial, final,
interpolated images, and their corresponding neighbors (or a sub-graph)
as the input. For generating the sub-graph, we considered neighboring
atoms of each image that were within a cut-off distance of 3 A from the
corresponding image.

Model performance benchmarking

Scratch models. We refer to scratch models as those modified ALIGNN
architectures that were not pre-trained on any bulk property prior to
being trained for E,, predictions. Thus, our scratch models provide a
baseline for performance comparisons with our TL models. Specifically,
we used two instances of the ALIGNN architecture to process two
structures as input (i.e., the initial and final configurations, similar to
MODEL-1), without any pre-training. The resultant embeddings from
both instances were combined through addition (SCRATCH-ADD),
subtraction (SCRATCH-SUB), or concatenation (SCRATCH-CC). We
used this two-input-structure approach for training scratch models since
the standard ALIGNN architecture is capable of taking only one input
structure and any scratch resultant model will be incapable of identifying
multiple migration pathways within the same structure.

Classical ML models. To establish a performance benchmark in addi-
tion to scratch models, we compared our MPT model against classical ML
models, namely an RFR and a GBR. Both classical models were con-
structed using a comprehensive feature set that originated from two
sources: the matminer.featurizers package within the matminer library™,
and nine manually engineered features tailored to capture cation
migration pathways. Matminer provided elemental, stoichiometric,
electronic, environmental, structural, and interaction-based descriptors.
Since RFR and GBR models cannot take two structures as input config-
urations simultaneously, we engineered the manual features to capture
the characteristics of the migration pathway. The manual features
included cation bond lengths, path distance, coordination number, and
Voronoi polyhedra-derived attributes. The input structure to derive the
features was the initial configuration of the migrating ion. From an initial
set of 277 features, Pearson’s correlation coefficient® was used for feature
selection. While we removed features that were highly correlated with
each other, only features exhibiting some correlation (>0.10) with the
target variable (E,,) were retained, resulting in a final set of 75 features.
The hyperparameters of both RFR and GBR were optimized using five-
fold cross-validation scores. Details on the specific features used and the
optimized hyperparameters are compiled in Section S2, Tables S2 and S3
of the SL

MACE-NEB E,,, calculation. In addition to scratch and classical models,
we compare the performance of our TL models with E,, predictions from
NEB calculations, done with a universal MLIP, namely MACE-MP-0".,
For NEB calculations with MACE, we used the implementation available
in the atomic simulation environment (ASE®**). Note that we did not fine-
tune the MACE-MP-0 model on our dataset and we used it only as a force

and energy estimator for NEB calculations. We performed the NEB
calculations using two variations, one where we relaxed the endpoints
using MACE-MP-0 before performing the NEB (we refer to these pre-
dictions as MACE-NEB-RELAX or MACE-RELAX) and the other with
no relaxation of the endpoints (MACE-NEB-NO-RELAX or MACE-
NO-RELAX). Note that the MACE-NEB-NO-RELAX is the case that is
similar to our TL model implementations, as we do not relax the end-
points before training the model, except for the charged state structures
that were relaxed with DFT to obtain the true GS*. Specifics on the NEB
calculations performed using MACE and ASE are described in Section S4
and Table $4 of the SL

Data availability

All computed data and constructed models associated with this work are
available online freely to all via our GitHub repository at https://github.com/
sai-mat-group/predicting-migration-barriers.

Code availability

All codes related to this work are available online freely to all via our GitHub
repository. The source code of ALIGNN is available at the GitHub reposi-
tory maintained by the developers of ALIGNN.
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