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S1 Comparison of calculated barriers against experimental migration enthalpies

Nudged elastic band (NEB) calculated migration barriers correspond to the 0 K internal energy barrier (i.e., Em) at fixed lattice
parameter and, by construction, excludes the p−V contributions that are typically ‘small’ in solids, especially in frameworks
that have low isothermal compressibilities. Thus, it is often assumed that the experimental migration enthalpy (hm)≈ Em.

To assess the validity of the Em ≈ hm approximation, we compare NEB-calculated Em with literature experimental
hm for 15 compounds in Figure S1. Specifically, we consider LiVPO4F,1 LiCoO2,2 LiFePO4,3–5 Mg0 · 148Ti2S4,6 MgSc2Se4,7

Na3PS4,8 LiMn2O4,9 LiCoPO4,10 O3-NaCoO2,11 Li10GeP2S12,12 Na3PSe4,13 Na3V2(PO4)3,14 LiGe2(PO4)3,15 d LiV2O5,16

and Li7P3S11
17. The experimental hm are from temperature-dependent galvanostatic intermittent titration technique or electronic

impedance spectroscopy measurements, where the Arrhenius slope of the diffusivity yields (hm) and thus implicitly includes
(p−V ) effects. Eight of the 15 points lie ‘close’ to the parity line (dashed black line), indicating that Em is a reliable
approximation for hm in many cases. The largest deviations (Na3PSe4 and Na3PS4) stem from experimental “activation
energies" that include defect-formation contributions in addition to migration. The remaining discrepancies are primarily
attributable to known limitations of the exchange–correlation functionals used in the density functional theory based Em
estimates.18

S2 Default model configuration and other hyperparmeters

The default atomistic line graph neural network (ALIGNN) model configuration utilized for the study is listed in Table S1.
We maintained the number of epochs at 500 for the training of all four models, as we consistently observed the validation
loss converging around this epoch count in all instances. The default batch size was set to 16 for all the scratch and modified
multi-property pre-trained (MPT) models during the initial performance analysis. The optimal batch size for the best-performing
model (MODEL-3) and the model with attention blocks (MODEL-4) were further tuned and the batch size that offered the best
test score is reported in Table S1. The architecture of the MPT model is visualized in Figure S2.
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Figure S1. Comparison of experimental hm and computational Em. A comparison of the experimentally and
computationally reported migration barriers for 15 different systems, that are a part of the overall dataset used in this work.
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Figure S2. Architecture of the MPT model. The final multi-layer perceptron layer of ALIGNN is modified such that there
are seven prediction heads corresponding to each of the seven properties in the cumulative dataset. The model takes both the
property and the one-hot encoded vector and is trained using a modified loss function, as depicted within the central panel of
the figure.
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Parameter Value

ALIGNN layers 4

Graph convolutional network layers 4

Atom input features 92

Edge input features 80

Bond angle input features 40

Embedding features 64

Hidden features 256

Normalization Batch

Default Batch size 16

Batch size for MODEL-3 128

Batch size for MODEL-4 64

Pre-training (PT) learning rate 0.0001

Fine-tuning (FT) learning rate 0.001

Optimizer Adaptive moment estimation with weight decay

Weight decay 0.00001

Random seed 123

Epochs 500

Table S1. Configuration of the ALIGNN model used in this work.
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S3 Construction of classical machine learning models

The features used in the classical machine learning models, namely random forest regression (RFR) and gradient boosted
regression (GBR), were obtained primarily from two sources: the matminer.features module within the matminer library, and
a collection of nine manually engineered features designed to describe characteristics of cation migration pathways. The
matminer library can comprehensively generate numerical descriptors from materials data, covering a broad spectrum of
features, including elemental features (derived from properties such as atomic mass, electronegativity, and ionization energy),
stoichiometric characteristics, valence electron configurations, statistical features representing the local atomic environment,
crystal graph-based descriptors, Coulombic interactions, and radial distribution function-based descriptors. The manually
engineered features encompassed the average bond length of the migrating cation at both its initial and final positions, the
total migration path distance, and the coordination number of the migrating cation. Additionally, Voronoi polyhedra were
constructed around each site occupied by the migrating cation. From these polyhedra, several metrics were calculated, including
the average solid angle subtended by each polyhedral face, average facet area, facet distance, the number of facet vertices, and
polyhedral volume.

Starting from an initial pool of 277 features, Pearson’s correlation coefficient was applied to identify the most
informative features. We excluded features showing high inter-correlation (correlation coefficient > 0.95) and retained only
those demonstrating at least a modest correlation (≥ 0.10) with the target variable. We chose a relatively low correlation
threshold for discarding features since the overall correlation observed between all features and the target variable is low.
Our filtering strategy ultimately led to a refined, final feature set consisting of 75 features. The selected 75 (with 5 manually
engineered features) features with their brief descriptions are listed in Table S2. Note that the statistics (mean, median, mode,
standard deviation, maxima, minima, and range) are obtained considering all the elements forming the respective compounds.
The hyperparameters used for the construction of RFR and GBR are listed in Table S3.

Table S2. Selected matminer-derived and manually engineered features and their descriptions

Index Feature Name Description

Matminer features

1 MagpieData mode Number Mode of the atomic number

2 MagpieData minimum MendeleevNumber Minimum Mendeleev number

3 MagpieData mean MendeleevNumber Mean Mendeleev number

4 MagpieData avg_dev MendeleevNumber Average deviation of Mendeleev number

5 MagpieData minimum MeltingT Minimum melting temperature (K)

6 MagpieData maximum MeltingT Maximum melting temperature (K)

7 MagpieData avg_dev MeltingT Average deviation of melting temperature (K)

8 MagpieData mode MeltingT Mode of the melting temperature (K)

9 MagpieData mean Column Mean group number (column) in the periodic table

10 MagpieData avg_dev Column Average deviation of group number in the periodic table

11 MagpieData minimum Row Minimum row number in the periodic table

12 MagpieData range Row Range of row numbers in the periodic table

13 MagpieData avg_dev Row Average deviation of row numbers in the periodic table

14 MagpieData range CovalentRadius Range of covalent radii (pm)

15 MagpieData mean CovalentRadius Mean covalent radius (pm)

Continued on next page
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Table S2: (continued)

Index Feature Name Description

16 MagpieData avg_dev CovalentRadius Average deviation of covalent radius (pm)

17 MagpieData maximum Electronegativity Maximum electronegativity

18 MagpieData range Electronegativity Range of electronegativity

19 MagpieData mean Electronegativity Mean electronegativity

20 MagpieData avg_dev Electronegativity Average deviation of electronegativity

21 MagpieData mode Electronegativity Mode of electronegativity

22 MagpieData minimum NsValence Minimum number of s-valence electrons

23 MagpieData range NsValence Range of number of s-valence electrons

24 MagpieData mean NsValence Mean number of s-valence electrons

25 MagpieData avg_dev NsValence Average deviation of number of s-valence electrons

26 MagpieData mean NpValence Mean number of p-valence electrons

27 MagpieData mode NdValence Mode of the number of d-valence electrons

28 MagpieData minimum NValence Minimum total number of valence electrons

29 MagpieData range NValence Range of total number of valence electrons

30 MagpieData avg_dev NValence Average deviation of total number of valence electrons

31 MagpieData avg_dev NpUnfilled Average deviation of number of unfilled p-orbitals

32 MagpieData mode NpUnfilled Mode of the number of unfilled p-orbitals

33 MagpieData minimum NUnfilled Minimum number of unfilled orbitals

34 MagpieData mean NUnfilled Mean number of unfilled orbitals

35 MagpieData mode NUnfilled Mode of the number of unfilled orbitals

36 MagpieData minimum ground state (GS)
volume_pa Minimum atomic volume from the GS

37 MagpieData mean GS volume_pa Mean atomic volume from the GS

38 MagpieData mode GS volume_pa Mode of the atomic volume from the GS

39 mean CN_VoronoiNN Mean coordination number using Voronoi Nearest
Neighbors

40 avg_dev CN_VoronoiNN Average deviation of coordination number using Voronoi
Nearest Neighbors

41 max relative bond length Maximum relative bond length in the structure

42 maximum neighbor distance variation Maximum variation in neighbor distances

43 mean neighbor distance variation Mean variation in neighbor distances

44 mean ordering parameter shell 1 Mean ordering parameter for the first coordination shell

45 mean ordering parameter shell 2 Mean ordering parameter for the second coordination
shell

Continued on next page
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Table S2: (continued)

Index Feature Name Description

46 mean local difference in
MendeleevNumber Mean of local differences in Mendeleev number

47 minimum local difference in MeltingT Minimum of local differences in melting temperature

48 range local difference in MeltingT Range of local differences in melting temperature

49 mean local difference in MeltingT Mean of local differences in melting temperature

50 avg_dev local difference in MeltingT Average deviation of local differences in melting
temperature

51 mean local difference in Column Mean of local differences in column number

52 minimum local difference in Row Minimum of local differences in row number

53 maximum local difference in Row Maximum of local differences in row number

54 mean local difference in Row Mean of local differences in row number

55 range local difference in CovalentRadius Range of local differences in covalent radius

56 mean local difference in CovalentRadius Mean of local differences in covalent radius

57 avg_dev local difference in CovalentRadius Average deviation of local differences in covalent radius

58 range local difference in Electronegativity Range of local differences in electronegativity

59 avg_dev local difference in
Electronegativity Average deviation of local differences in electronegativity

60 avg_dev local difference in NsValence Average deviation of local differences in s-valence
electrons

61 maximum local difference in NpValence Maximum of local differences in p-valence electrons

62 avg_dev local difference in NpValence Average deviation of local differences in p-valence
electrons

63 range local difference in NdValence Range of local differences in d-valence electrons

64 avg_dev local difference in NdValence Average deviation of local differences in d-valence
electrons

65 minimum local difference in NValence Minimum of local differences in total valence electrons

66 maximum local difference in NValence Maximum of local differences in total valence electrons

67 range local difference in NValence Range of local differences in total valence electrons

68 avg_dev local difference in NValence Average deviation of local differences in total valence
electrons

69 maximum local difference in NpUnfilled Maximum of local differences in unfilled p-orbitals

70 maximum local difference in
SpaceGroupNumber Maximum of local differences in space group number

Manually engineered features

71 ini_cn Coordination number of the intercalating ion

72 avg_ini_solid_angle Average solid angle of the Voronoi polyhedra

Continued on next page
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Table S2: (continued)

Index Feature Name Description

73 avg_ini_facet_area Average facet area

74 n_verts_ini Average number of vertices per facet

75 path_distance Path distance

Parameter Value

n_estimators 150

Random state 123

Cross-fold validation 5

Table S3. Hyperparameters for RFR and GBR.

S4 MACE-NEB Em Calculations

Multi atomic cluster expansion (MACE) based NEB calculations were performed using the PT foundational model ‘MACE-
MP-0‘, which leverages a dataset of density functional theory relaxation trajectories from all compounds within the materials
project to accurately predict forces and energies. During the NEB calculations, the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm was used to converge the forces to a threshold of |0.05| eV/Å, with a maximum of 1000 steps allowed for
convergence. For MACE-NEB-RELAX migration barrier (Em) estimation, the endpoints of the migration pathway were relaxed
using a quasi-Newton optimizer, again with a force convergence threshold of |0.05| eV/Å. The specific parameters employed
for the MACE-NEB calculations are detailed in Table S4.

Parameter Value

BFGS force threshold |0.05| eV/Å

Maximum number of convergence steps 1000

Optimizer for endpoint relaxation quasi-Newton

Optimizer for NEB calculation BFGS

MACE model MACE-MP-0

MACE model type large

Float type float64

Table S4. MACE-NEB calculation parameters.
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S5 Performance metrics

MODELS
Train Test

R2 score MAE (eV) R2 score MAE (eV)

RFR 0.837 0.178 0.396±0.295 0.318±0.055

GBR 0.879 0.198 0.097±0.679 0.299±0.073

SCRATCH-ADD 0.575 0.203 -0.035±0.325 0.451±0.067

SCRATCH-SUB -17.179 2.434 -11.842±4.798 2.623±0.118

SCRATCH-CC 0.777 0.157 -1.241±1.231 0.536±0.111

SCRATCH-MODEL-3 0.981 0.074 -2.414±0.386 0.541±0.065

MODEL-1-ADD 0.533 0.246 -0.076±0.307 0.400±0.074

MODEL-1-SUB 0.165 0.4411 -0.083±0.100 0.462±0.068

MODEL-1-CC 0.562 0.241 0.219±0.148 0.379±0.060

MODEL-1-CC-
SINGLE-PATH 0.912 0.107 0.603±0.263 0.249±0.045

MODEL-2 0.579 0.218 0.261±0.348 0.382±0.059

MODEL-3 0.940 0.085 0.703±0.109 0.261±0.034

MODEL-4 0.822 0.171 0.634±0.107 0.277±0.039

MACE-NEB-RELAX 0.099 0.363 0.185±0.601 0.340±0.064

Table S5. Model performance metrics for training and test sets. MAE is the mean absolute error. ADD, SUB, and CC refer to
addition, subtraction, and concatenation of embeddings from two MPT model instances. Descriptions of the different model
architectures are provided in the Methods section of the main text. ‘SCRATCH-MODEL-3’ refers to the MODEL-3
architecture, i.e., structure with a five-image band input, that is trained from scratch directly on the train dataset. The standard
errors reported for the test set for all models are obtained from the bootstrapped test set.

S6 Parity plots
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Train R2 Score: 0.562
Train MAE       : 0.241 eV

Test R2 Score: 0.219
Test MAE       : 0.379 eV

Train R2 Score: 0.579
Train MAE       : 0.218 eV

Test R2 Score: 0.261
Test MAE       : 0.382 eV

Train R2 Score: 0.822
Train MAE       : 0.171 eV

Test R2 Score: 0.634
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Figure S3. Prediction vs. target for MODEL-1, MODEL-2, and MODEL-4 . Parity plot illustrating the prediction versus
the target for training and test dataset for MODEL-1 (panels a and b), MODEL-2 (panels c and d), and MODEL-4 (panels e and
f). The histograms on the right and top margins correspond to the frequency distribution of prediction and target Em,
respectively.

9/12



0 2 4 6 8

0

2

4

6

8

0 1 2 3 4 5

0

1

2

3

4

5

0 2 4 6 8

0

2

4

6

8

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4

0

1

2

3

4

0 2 4 6 8

0

2

4

6

8

P
re

di
ct

ed
 E

m
 in

 e
V

P
re

di
ct

ed
 E

m
 in

 e
V

Target Em in eV Target Em in eV

a) b)

P
re

di
ct

ed
 E

m
 in

 e
V

P
re

di
ct

ed
 E

m
 in

 e
V

Target Em in eV Target Em in eV

c) d)

P
re

di
ct

ed
 E

m
 in

 e
V

P
re

di
ct

ed
 E

m
 in

 e
V

Target Em in eV Target Em in eV
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Train R2 Score: 0.837
Train MAE       : 0.178 eV

Test R2 Score: 0.396
Test MAE       : 0.318 eV

Train R2 Score: 0.879
Train MAE       : 0.198 eV

Test R2 Score: 0.097
Test MAE       : 0.299 eV
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Test R2 Score: 0.185
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Figure S4. Prediction vs target for RFR, GBR, and MACE-NEB-RELAX. Parity plot illustrating the prediction versus the
target for training and test dataset for RFR (panels a and b), GBR (panels c and d), and MACE-NEB-RELAX (panels e and f).
Notations used are identical to Figure S3.
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S7 Dataset size influence in MODEL-4
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Figure S5. Performance of MODEL-4 as a function of training dataset size. The performance metrics, namely 1-R2

scores (blue bars) and MAEs (red bars) for MODEL-4 are plotted for four different training dataset sizes. Note that the
performance of MODEL-4, as quantified using test R2 scores and MAEs, improves as the training dataset size increases.
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