—Electronic Supporting Information-
Leveraging transfer learning for accurate estimation
of ionic migration barriers in solids

Reshma Devi!, Keith T. Butler>", and Gopalakrishnan Sai Gautam'-”

'Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
2Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
“k.t.butler@ucl.ac.uk; saigautamg@iisc.ac.in

S1 Comparison of calculated barriers against experimental migration enthalpies

Nudged elastic band (NEB) calculated migration barriers correspond to the 0 K internal energy barrier (i.e., E,,) at fixed lattice
parameter and, by construction, excludes the p —V contributions that are typically ‘small’ in solids, especially in frameworks
that have low isothermal compressibilities. Thus, it is often assumed that the experimental migration enthalpy (h,,) & E,,,.

To assess the validity of the E,,, ~ h,, approximation, we compare NEB-calculated E,, with literature experimental
h,, for 15 compounds in Figure S1. Specifically, we consider LIVPO,F,! LiC00,,? LiFePO,,> Mg - 14¢Ti»S4.° MgSc,Se,,’
Na;PS,.? LiMn,0,,” LiCoPO,,'? 03-NaCo00,,!" Li;(GeP,S,,'> Na;PSe4,'? NazV,(PO,)s,'* LiGe,(POy)s,'5 d—LiV,0s,'°
and Li;P;S,,!”. The experimental /,, are from temperature-dependent galvanostatic intermittent titration technique or electronic
impedance spectroscopy measurements, where the Arrhenius slope of the diffusivity yields (4,,) and thus implicitly includes
(p — V) effects. Eight of the 15 points lie ‘close’ to the parity line (dashed black line), indicating that E,, is a reliable
approximation for /4, in many cases. The largest deviations (NazPSes and Na3PS4) stem from experimental “activation
energies" that include defect-formation contributions in addition to migration. The remaining discrepancies are primarily
attributable to known limitations of the exchange—correlation functionals used in the density functional theory based E,,
estimates. '8

S2 Default model configuration and other hyperparmeters

The default atomistic line graph neural network (ALIGNN) model configuration utilized for the study is listed in Table S1.
We maintained the number of epochs at 500 for the training of all four models, as we consistently observed the validation
loss converging around this epoch count in all instances. The default batch size was set to 16 for all the scratch and modified
multi-property pre-trained (MPT) models during the initial performance analysis. The optimal batch size for the best-performing
model (MODEL-3) and the model with attention blocks (MODEL-4) were further tuned and the batch size that offered the best
test score is reported in Table S1. The architecture of the MPT model is visualized in Figure S2.
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Figure S1. Comparison of experimental /,, and computational E,,. A comparison of the experimentally and
computationally reported migration barriers for 15 different systems, that are a part of the overall dataset used in this work.
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Figure S2. Architecture of the MPT model. The final multi-layer perceptron layer of ALIGNN is modified such that there
are seven prediction heads corresponding to each of the seven properties in the cumulative dataset. The model takes both the
property and the one-hot encoded vector and is trained using a modified loss function, as depicted within the central panel of

the figure.
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Parameter Value
ALIGNN layers 4
Graph convolutional network layers 4
Atom input features 92
Edge input features 80
Bond angle input features 40
Embedding features 64
Hidden features 256
Normalization Batch
Default Batch size 16
Batch size for MODEL-3 128
Batch size for MODEL-4 64
Pre-training (PT) learning rate 0.0001
Fine-tuning (FT) learning rate 0.001

Optimizer Adaptive moment estimation with weight decay
Weight decay 0.00001
Random seed 123
Epochs 500

Table S1. Configuration of the ALIGNN model used in this work.
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S3 Construction of classical machine learning models

The features used in the classical machine learning models, namely random forest regression (RFR) and gradient boosted
regression (GBR), were obtained primarily from two sources: the matminer.features module within the matminer library, and
a collection of nine manually engineered features designed to describe characteristics of cation migration pathways. The
matminer library can comprehensively generate numerical descriptors from materials data, covering a broad spectrum of
features, including elemental features (derived from properties such as atomic mass, electronegativity, and ionization energy),
stoichiometric characteristics, valence electron configurations, statistical features representing the local atomic environment,
crystal graph-based descriptors, Coulombic interactions, and radial distribution function-based descriptors. The manually
engineered features encompassed the average bond length of the migrating cation at both its initial and final positions, the
total migration path distance, and the coordination number of the migrating cation. Additionally, Voronoi polyhedra were
constructed around each site occupied by the migrating cation. From these polyhedra, several metrics were calculated, including
the average solid angle subtended by each polyhedral face, average facet area, facet distance, the number of facet vertices, and
polyhedral volume.

Starting from an initial pool of 277 features, Pearson’s correlation coefficient was applied to identify the most
informative features. We excluded features showing high inter-correlation (correlation coefficient > 0.95) and retained only
those demonstrating at least a modest correlation (> 0.10) with the target variable. We chose a relatively low correlation
threshold for discarding features since the overall correlation observed between all features and the target variable is low.
Our filtering strategy ultimately led to a refined, final feature set consisting of 75 features. The selected 75 (with 5 manually
engineered features) features with their brief descriptions are listed in Table S2. Note that the statistics (mean, median, mode,
standard deviation, maxima, minima, and range) are obtained considering all the elements forming the respective compounds.
The hyperparameters used for the construction of RFR and GBR are listed in Table S3.

Table S2. Selected matminer-derived and manually engineered features and their descriptions

Index Feature Name Description
Matminer features
1 MagpieData mode Number Mode of the atomic number
2 MagpieData minimum MendeleevNumber Minimum Mendeleev number
3 MagpieData mean MendeleevNumber Mean Mendeleev number
4 MagpieData avg_dev MendeleevNumber Average deviation of Mendeleev number
5 MagpieData minimum MeltingT Minimum melting temperature (K)
6 MagpieData maximum MeltingT Maximum melting temperature (K)
7 MagpieData avg_dev MeltingT Average deviation of melting temperature (K)
8 MagpieData mode MeltingT Mode of the melting temperature (K)
9 MagpieData mean Column Mean group number (column) in the periodic table
10 MagpieData avg_dev Column Average deviation of group number in the periodic table
11 MagpieData minimum Row Minimum row number in the periodic table
12 MagpieData range Row Range of row numbers in the periodic table
13 MagpieData avg_dev Row Average deviation of row numbers in the periodic table
14 MagpieData range CovalentRadius Range of covalent radii (pm)
15 MagpieData mean CovalentRadius Mean covalent radius (pm)

Continued on next page
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Table S2: (continued)

Index Feature Name Description
16 MagpieData avg_dev CovalentRadius Average deviation of covalent radius (pm)
17 MagpieData maximum Electronegativity Maximum electronegativity
18 MagpieData range Electronegativity Range of electronegativity
19 MagpieData mean Electronegativity Mean electronegativity
20 MagpieData avg_dev Electronegativity Average deviation of electronegativity
21 MagpieData mode Electronegativity Mode of electronegativity
22 MagpieData minimum NsValence Minimum number of s-valence electrons
23 MagpieData range NsValence Range of number of s-valence electrons
24 MagpieData mean NsValence Mean number of s-valence electrons
25 MagpieData avg_dev NsValence Average deviation of number of s-valence electrons
26 MagpieData mean NpValence Mean number of p-valence electrons
27 MagpieData mode NdValence Mode of the number of d-valence electrons
28 MagpieData minimum NValence Minimum total number of valence electrons
29 MagpieData range NValence Range of total number of valence electrons
30 MagpieData avg_dev N'Valence Average deviation of total number of valence electrons
31 MagpieData avg_dev NpUnfilled Average deviation of number of unfilled p-orbitals
32 MagpieData mode NpUnfilled Mode of the number of unfilled p-orbitals
33 MagpieData minimum NUnfilled Minimum number of unfilled orbitals
34 MagpieData mean NUnfilled Mean number of unfilled orbitals
35 MagpieData mode NUnfilled Mode of the number of unfilled orbitals
36 MagpieData minimum ground state (GS) Minimum atomic volume from the GS
volume_pa
37 MagpieData mean GS volume_pa Mean atomic volume from the GS
38 MagpieData mode GS volume_pa Mode of the atomic volume from the GS
39 mean CN_VoronoiNN Mean coordination r;;?;;i Olissing Voronoi Nearest
40 avg_dev CN_VoronoiNN Average deviation cl)é ;;cézfi;ztiigc;?bgtrl;nber using Voronoi
41 max relative bond length Maximum relative bond length in the structure
42 maximum neighbor distance variation Maximum variation in neighbor distances
43 mean neighbor distance variation Mean variation in neighbor distances
44 mean ordering parameter shell 1 Mean ordering parameter for the first coordination shell
45 mean ordering parameter shell 2 Mean ordering parameter for the second coordination

shell

Continued on next page
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Table S2: (continued)

Index Feature Name Description
46 mean local difference in Mean of local differences in Mendeleev number
MendeleevNumber
47 minimum local difference in MeltingT Minimum of local differences in melting temperature
48 range local difference in MeltingT Range of local differences in melting temperature
49 mean local difference in MeltingT Mean of local differences in melting temperature
50 avg_dev local difference in MeltingT Average deviation t(;iigzitclilirfierences in melting
51 mean local difference in Column Mean of local differences in column number
52 minimum local difference in Row Minimum of local differences in row number
53 maximum local difference in Row Maximum of local differences in row number
54 mean local difference in Row Mean of local differences in row number
55 range local difference in CovalentRadius Range of local differences in covalent radius
56 mean local difference in CovalentRadius Mean of local differences in covalent radius
57 avg_dev local difference in CovalentRadius | Average deviation of local differences in covalent radius
58 range local difference in Electronegativity Range of local differences in electronegativity
59 an_%izggZile;ftfiir;;me in Average deviation of local differences in electronegativity
60 ave_dev local difference in NsValence Average deviation ofsli)az?llrociriiferences in s-valence
61 maximum local difference in NpValence Maximum of local differences in p-valence electrons
62 ave_dev local difference in NpValence Average deviation ofil(;ccai (iiferences in p-valence
63 range local difference in NdValence Range of local differences in d-valence electrons
64 avg_dev local difference in NdValence Average deviation oféloeccazr gliferences in d-valence
65 minimum local difference in N'Valence Minimum of local differences in total valence electrons
66 maximum local difference in NValence Maximum of local differences in total valence electrons
67 range local difference in N'Valence Range of local differences in total valence electrons
63 ave_dev local difference in NValence Average deviation of IZT:(I:t?(i;f:rences in total valence
69 maximum local difference in NpUnfilled Maximum of local differences in unfilled p-orbitals
70 maxisr;::; éﬁiﬂpﬁfzggfe in Maximum of local differences in space group number
Manually engineered features
71 ini_cn Coordination number of the intercalating ion
72 avg_ini_solid_angle Average solid angle of the Voronoi polyhedra

Continued on next page
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Table S2: (continued)

Index Feature Name Description
73 avg_ini_facet_area Average facet area
74 n_verts_ini Average number of vertices per facet
75 path_distance Path distance
Parameter Value
n_estimators 150
Random state 123
Cross-fold validation 5

Table S3. Hyperparameters for RFR and GBR.

S4 MACE-NEB E,, Calculations

Multi atomic cluster expansion (MACE) based NEB calculations were performed using the PT foundational model ‘MACE-
MP-0°, which leverages a dataset of density functional theory relaxation trajectories from all compounds within the materials
project to accurately predict forces and energies. During the NEB calculations, the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm was used to converge the forces to a threshold of |0.05] eV/A, with a maximum of 1000 steps allowed for
convergence. For MACE-NEB-RELAX migration barrier (E,,) estimation, the endpoints of the migration pathway were relaxed
using a quasi-Newton optimizer, again with a force convergence threshold of |0.05| eV/A. The specific parameters employed
for the MACE-NEB calculations are detailed in Table S4.

Parameter Value
BFGS force threshold 0.05| eV/A
Maximum number of convergence steps 1000
Optimizer for endpoint relaxation quasi-Newton
Optimizer for NEB calculation BFGS
MACE model MACE-MP-0
MACE model type large
Float type float64

Table S4. MACE-NEB calculation parameters.
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S5 Performance metrics

I Train Test
RZ score MAE (eV) R? score MAE (eV)
RFR 0.837 0.178 0.39640.295 0.318+0.055
GBR 0.879 0.198 0.0974+0.679 0.29940.073
SCRATCH-ADD 0.575 0.203 -0.035+0.325 0.451+0.067
SCRATCH-SUB -17.179 2.434 -11.842+4.798 2.6234+0.118
SCRATCH-CC 0.777 0.157 -1.241+£1.231 0.536+0.111
SCRATCH-MODEL-3 0.981 0.074 -2.414+0.386 0.541+0.065
MODEL-1-ADD 0.533 0.246 -0.076+0.307 0.400+0.074
MODEL-1-SUB 0.165 0.4411 -0.083+0.100 0.46240.068
MODEL-1-CC 0.562 0.241 0.21940.148 0.379+0.060
g{ggﬁ;:;ﬁ% 0.912 0.107 0.6034+0.263 0.249+0.045
MODEL-2 0.579 0.218 0.261£0.348 0.38240.059
MODEL-3 0.940 0.085 0.70340.109 0.261+0.034
MODEL-4 0.822 0.171 0.634+0.107 0.27740.039
MACE-NEB-RELAX 0.099 0.363 0.18540.601 0.340+0.064

Table S5. Model performance metrics for training and test sets. MAE is the mean absolute error. ADD, SUB, and CC refer to
addition, subtraction, and concatenation of embeddings from two MPT model instances. Descriptions of the different model

architectures are provided in the Methods section of the main text. ‘SCRATCH-MODEL-3’ refers to the MODEL-3

architecture, i.e., structure with a five-image band input, that is trained from scratch directly on the train dataset. The standard
errors reported for the test set for all models are obtained from the bootstrapped test set.

S6 Parity plots
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Figure S3. Prediction vs. target for MODEL-1, MODEL-2, and MODEL-4 . Parity plot illustrating the prediction versus
the target for training and test dataset for MODEL-1 (panels a and b), MODEL-2 (panels ¢ and d), and MODEL-4 (panels e and

f). The histograms on the right and top margins correspond to the frequency distribution of prediction and target E,,,,
respectively.
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Figure S4. Prediction vs target for RFR, GBR, and MACE-NEB-RELAX. Parity plot illustrating the prediction versus the
target for training and test dataset for RFR (panels a and b), GBR (panels ¢ and d), and MACE-NEB-RELAX (panels e and f).
Notations used are identical to Figure S3.

10/12



S7 Dataset size influence in MODEL-4
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Figure S5. Performance of MODEL-4 as a function of training dataset size. The performance metrics, namely 1-R?
scores (blue bars) and MAE:s (red bars) for MODEL-4 are plotted for four different training dataset sizes. Note that the
performance of MODEL-4, as quantified using test R? scores and MAEs, improves as the training dataset size increases.
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