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Optimal pre-train/fine-tune strategies for
accurate material property predictions
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A pathway to overcome limited data availability inmaterials science is to use the framework of transfer
learning, where a pre-trained (PT) machine learning model (on a larger dataset) can be fine-tuned (FT)
ona target (smaller) dataset.Wesystematically explore theeffectivenessof variousPT/FTstrategies to
learn and predict material properties and create generalizable models by PT on multiple properties
(MPT) simultaneously. Specifically, we leverage graph neural networks (GNNs) to PT/FT on seven
diverse curated materials datasets, with sizes ranging from 941 to 132,752. Besides identifying
optimal PT/FT strategies and hyperparameters, we find our pair-wise PT-FT models to consistently
outperformmodels trained from scratch on target datasets. Importantly, our MPTmodels outperform
pair-wisemodels on several datasets and,more significantly, on a 2Dmaterial bandgapdataset that is
completely out-of-domain. Finally, we expect our PT/FT andMPT frameworks to accelerate materials
design and discovery for various applications.

Machine learning (ML) based architectures play a pivotal role in materials
research due to their high accuracy in predicting properties at low com-
putational costs1–4, which can accelerate materials discovery for various
applications. The accuracy of an ML model depends on the quantity and
quality of data, the model framework, and the kind of algorithm used for
training. Importantly, regression or classification models built on ‘simple’
composition-based descriptors (that may be tailored with scientific intui-
tion) typically underperform in material property predictions compared to
models that take the full structural information as input, such as graph
neural networks (GNNs)5. However, GNNs perform better than ‘simple’
models only when the dataset size is large (i.e., >104 datapoints)6, while
typical materials-related datasets are small (a few thousand datapoints
or fewer).

Usually, GNNs exhibit high variance or increased over-fitting when
trained on small datasets, resulting in larger generalization errors than
simple models1,6–8. Although an obvious way to obtain better GNNs is to
increase the dataset size, this may be challenging for specific properties that
are difficult to compute or measure, such as defect formation energies,
molecular adsorption energies on surfaces, ionic conductivities, electron-
phonon coupling constants, and grain boundary energies, to name a few.
Another pathway is to use models or frameworks that train well on small
datasets, without necessarily exhibiting high variance. In the context of
training robustmodels on small datasets, transfer learning (TL) as a strategy
has recently gained immense popularity in improving model
performance9–12. Specifically, TL allows knowledge transfer from a source
domain, typicallywith a large dataset size, to a target domain of interest with

a small dataset size13. Usually, the parameters of selective (or all) layers of the
model pre-trained (PT) on the source dataset are tuned or re-trained on the
target dataset to make predictions on the target property, a process referred
to as fine-tuning (FT)13–15. Otherwise, parameters from the PTmodel can be
used to construct feature vectors for a new deep learning (DL) model on a
target property, a technique referred to as feature extraction14. Note that the
benchmark for a TLmodel is always to perform better than models trained
from scratch (referred to as scratch models) on the smaller target dataset.

Several recent studies have sought to address the issue of small dataset
size in materials science using TL. For example, Jha et al.16 employed the
ElemNet17 architecture to TL and reduce themean absolute error (MAE) in
predicting experimental formation energies to 0.0731 eV (from0.1325 eV in
scratch models) by PT the same model on density functional theory
(DFT18,19) computed formation energies. The size of the PT and FT datasets
were 341,000 and 1643, respectively. Subsequently, Gupta et al.15 reduced
the MAE on experimental formation energies further to 0.0708 eV by uti-
lizing cross-property TL and feature extraction. Notably, the DFT-
calculated PT dataset in both the above works15,16 came from the open
quantum materials database (OQMD)20,21.

Earlier, Lee andAsahi22 included structural information in TL by using
the crystal graph convolutional neural network (CGCNN)23 as the base
architecture. By loading the weights of the PTmodel for FT on six different
properties, including materials project (MP24) formation energy and band
gap datasets, the authors highlighted that the prediction accuracy of the FT
model increased as the sizeof thePTdataset and/or theFTdataset increased.
Subsequently, Gupta et al.14 used the atomistic line graph neural network
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(ALIGNN25) architecture, which also takes structural information as input,
to FT amodel PT onMP formation energy onmultiple properties from the
joint automated repository for various integrated simulations (JARVIS26)
database, including JARVIS-3D, JARVIS-2D, etc. The authors14 reported
that the feature extraction strategy generated better TL models on 54% of
instances compared to scratch models.

Chang et al. proposed a framework called the mixture of experts
(MOEs27) to overcome limitations of TL, such as negative transfer28 and
catastrophic forgetting29,30. The former refers to the casewhere theTLmodel
performs worse than the scratch model, and the latter refers to the case
where the TL model overfits the target property due to loss of information
captured from the PTmodel. TheMOEmodel extracted features from a PT
CGCNN model using trainable gated functions and was benchmarked on
19material property regression tasks. Remarkably, theMOEmodel showed
better performance on all 19 tasks compared to pair-wise TL models that
used computational formation energies for PT. Additionally, Chang et al.
also demonstrated that the extent of improvement in the performanceof the
TL models (versus scratch models) varied non-monotonically with target
dataset sizes. Importantly, there has been no study, until now, on how the
choice of PT and FT dataset(s) and associated hyperparameters affect the
generalization ability of a new FT model. Another aspect that has not been
rigorously explored in literature so far is the performance of an FT model
that has been PT simultaneously on several different material properties.

In this work, we systematically explore the efficacy of pair-wise and
multi-property PT (MPT) approaches for TL inmaterials science datasets
using the ALIGNN architecture as the base. We choose seven different
properties from the Matminer library31, including DFT average shear
modulus (GV), frequency of the highest optical phononmode peak (PH),
DFT band gap (BG), DFT formation energy (FE), computed piezoelectric
modulus (PZ), computed dielectric constant (DC), and experimental

band gap (EBG). First, we optimize hyperparameters for pair-wise TL,
such as PT andFTdataset size, andpossible FT strategies, and examine the
TLperformance trends amongPTandFTproperties that are (not) related.
Subsequently, we utilize an MPT approach, where we PT on multiple
properties simultaneously followed by FT on a target property, and
compare its performance to scratch and pair-wise models. Our MPT
approach is different from the MOE or feature extraction strategies since
we use the entire PT model in FT. Apart from demonstrating that our
MPT strategy outperforms the pair-wise TL models on 4/7 instances (in
terms of MAE), we also show our MPT model to FT quite well on a
completely out-of-domain dataset, namely, the JARVIS-DFT 2D mate-
rials band gaps26. Also, we find our TLmodels to exhibit lower (or similar)
MAEs, oftenutilizing twoor three orders ofmagnitude lower dataset sizes,
than previous TL models14,16,22,27. Finally, our work reveals robust PT/FT
strategies for efficient TL between material property domains, which
should further accelerate property predictions andmaterials discovery for
various applications.

Results
Influence of FT dataset size
Figure 1a illustrates the heatmaps for the scratchmodels (panel a and c) for
the FE, DC, and BG datasets for varying dataset sizes, namely, 10, 100, 200,
500, and 800. The y labels in Fig. 1a, c denote the dataset name, while the x
labels denote the corresponding training dataset size. The top and bottom
panels correspond to the R2 scores and MAEs, respectively. The color code
of the heatmap varies between red and blue, corresponding to the values 0
and1.Thus, a goodmodel has highR2 scores (close to 1orblue cells) and low
MAEs (close to 0 or red cells). The test R2 scores and MAEs of scratch
models for all datasets (and corresponding dataset sizes from 10 to 800) are
compiled in Tables S8 and S9 of the SI.

Fig. 1 | Role of FT dataset size on the performance of selective PT-FTmodels over
the corresponding scratch models. a, cDisplay the test R2 scores andMAEs for the
models constructed from scratch, with the x and y labels representing the dataset
name and size, respectively. Panels (b, d) indicate the test R2 scores and MAEs for

select PT-FTmodels. The x and y labels in panels (b,d) correspond to the dataset size
and the name of the PT-FT pair, respectively. The heatmap color bar varies between
red (low MAE) and blue (high R2 score).
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Figure 1b displays the heatmaps for pair-wise TL models, where we
performedPT-FTon select pairs, namely, BG-FE,BG-DC,DC-BG, andFE-
BG. The notations used in Fig. 1b are similar to panel a, with the y labels in
panel b indicating the specific PT-FT pair. Note that we limited the max-
imum size of the FT dataset size to 800 as it is roughly 90% of the smallest
dataset size that we have considered (i.e., PZwith 941 datapoints). Similarly,
for PT among all PT-FT pairs, we capped the dataset size to 941, so as to
remove the influence of PTdataset size.We usedmodel parameters as listed
in Table S1 and used strategy 1 for FT (Fig. 6). All PT-FT experiments were
conducted for five different random trials, and the mean results are plotted
in Fig. 1b, d.

The R2 scores and MAEs of the FT models are better than the scratch
models for all fourPT-FTpairs considered (Fig. 1). For example, theR2 score
and MAE for BG800 (i.e., scratch BG model with an 800-point dataset for
training) are 0.572and0.142, respectively (Fig. 1a, c). In comparison, theFE-
BG800model (i.e., FE as PTdataset and an 800-point dataset for FT on BG,
see Fig. 1b, d) exhibits R2 and MAE of 0.609 and 0.128, respectively. Simi-
larly, we observe the DC-BG800 model to perform better than the scratch
model as well (R2 and MAE of 0.598 and 0.130, respectively). Overall, we
observe improvements in bothR2 scores andMAEs in all three datasetswith
PT-FT models compared to scratch. Also, the PT-FT models exhibit better
(or similar) performance compared to scratch at smaller dataset sizes
(except for size 10).

The R2 and MAE improve for a PT-FT model with an increase in FT
dataset size, which is expected. For example, BG-FE800 has a better R2

(0.936) and MAE (0.048) than BG-FE500 (0.920 and 0.057, respectively).
Note that thepercentage improvement inR2 scores andMAEs is saturated as
the FT dataset size increases. For instance, the percentage improvement in
R2 score for BG-FE on increasing the dataset size from 200 (R2 = 0.845) to
500 (R2 = 0.920) is ~8.9%, whereas it is only ~1.7% when it is increased to
800 (R2 = 0.936) from 500. Thus, the choice of the FT dataset size should
preferably be close to the point where the R2 scores andMAEs saturate (i.e.,
around 800 datapoints in Fig. 1). We, therefore, fixed the FT dataset size to
800 for all the following experiments. The results for the FT dataset sizes of
10, 100, 200, and 500 for the following sections are illustrated in Tables
S10–S20 of the SI.

Influence of PT dataset size
We chose the two largest datasets in our consideration, FE and BG, to study
the influence of PT dataset size, and utilized 1K, 5K, 10K, 50K, and 100K
randomly sampled subsets from the 90% train datasets of FE and BG.Using
FT strategy 1, we performed FT on a fixed 800-point dataset, while varying
the PT dataset sizes. Panels a and b of Fig. 2 show the percentage change in
the test R2 scores of the PT-FT models with respect to the scratch models,
where we define the percentage change as [(R2 of PT-FT)-(R2 of
scratch)] × 100/(absolute value of R2 of scratch). Thus, positive (negative)

Fig. 2 | Influence of PT size andFT strategy onFTmodel performance.Percentage
change in test R2 scores of PT-FT models with respect to corresponding scratch
models, with the PT done on a FE and b BG. The FT datasets are indicated along the
x-axis, while the FT dataset size is kept to 800. PT dataset sizes are indicated with

different colored bars. c, dCircular bar plots illustrating the performance in terms of
c R2 scores and d 1-MAEs for select PT-FT models. Different FT strategies are
illustrated by the different colored bars. The range of the bars is indicated by the text
annotations provided across the concentric circles in both panels.
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values of percentage changes indicate better (worse) performance of the PT-
FT models versus scratch.

The performance ofmodels PTwith FE andBGare displayed in panels
a and b of Fig. 2, respectively, with the varying PT dataset sizes indicated by
different bar colors in both panels. Data from the FE-PZ and BG-PZ pairs
are plotted in Fig. S15a for ease of visualization, since the percentage
improvements in PT-FT models in these pairs are one order of magnitude
higher than the other PT-FT pairs considered. Tables S10–S13 of the SI
tabulate the R2 scores andMAEs for the FT dataset sizes of 10, 100, 200, and
500,while thePTdataset size (i.e., for FE andBG) is also varied,whileTables
S14 and S15 compile the percentage changes inR2 scores andMAEs. Figures
S16 and S17 visualize the data compiled in Tables S14 and S15.

The percentage change in performance of PT-FT models versus
scratch models is non-monotonic for both the PT datasets (FE and BG), as
the dataset size increases. For example, in FE-BG, FE-DC, FE-PH, BG-FE,
and BG-EBG pairs, the PT(10K)-FT models show lower improvement
versus scratch compared toPT(5K)-FTandPT(50K)-FTmodels. In the case
of PTwith FE, the FE(100K)-FToffers the best improvement inR2 scores for
all FTdatasets (Fig. 2a andFig. S15a),with theFE(50K)model being thenext
best in all FT cases exceptGV. The improvement in performancewithmore
PT data can be attributed to theGNN learning a better representation of the
‘normal’ data distribution of FE (Fig. 4b), which facilitates FT on a newer
property. At smaller PT dataset sizes (say≤10K points), there is a possibility
that the GNN gets strongly optimized to a smaller class of structures/che-
mistries and lacks generalization. Thus, with a normal distribution,
increasing the amount of PTdata available (≥50Kpoints) helps in obtaining
better models, while the models will exhibit some non-monotonicity in
performance at small dataset sizes (≤10K).

In contrast to FE, including a larger amount of data for PT with BG
does not always result in better FT model performance. For example, BG-
GV, BG-PH, BG-PZ, and BG-FE pairs exhibit poorer improvement versus
scratchwhenexposed to100KPT(BG)datapoints compared to50K (Fig. 2b
and Fig. S15a). In contrast, for DC and EBG, PT with BG(100K) gives the
best performance upon FT. Note that BG, DC, and EBG are correlated
properties as well as follow a log-normal distribution, whileGV, PH, and FE
exhibit a normal distribution (Fig. 4b). Thus, combining the trends observed
on PT with FE and BG, we can conclude that a larger amount of PT data is
only helpful if the PT data distribution is normal (e.g., FE), or if the FT is
done on a target that is correlated with the PT data (e.g., BG-EBG). Addi-
tionally, we observe that the similarity in data distribution in both the PT
and FT datasets is a weak handle in determining whether performance
improves with including more PT data, as shown by BG(50K)-PZ dis-
playing better performance than BG(100K)-PZ, where both BG and PZ
follow a log-normal distribution. For the following sections, we identify
100K and 50K to be the best dataset sizes to use while employing FE andBG
datasets for PT, respectively.

Best FT strategy
To determine the best FT strategy, we performed a comparison among the
four strategies considered (Fig. 6) for controlled PT and FT dataset sizes of
941 and 800, respectively, and selected PT-FT pairs (BG-FE, BG-DC, DC-
BG, and FE-BG), as illustrated in Fig. 2b. We plot R2 scores and 1-MAEs in
panels c and d of Fig. 2, respectively, in the form of circular bars. The ranges
of the bars are indicatedbynumerical notations across the concentric circles.
The circular bars that are farther from the origin represent both better R2

scores and MAEs. The unfreezing of two-body and three-body interaction
layers corresponding to FT strategy 4 are individually represented.

Importantly, we observe that unfreezing all the layers (or FT strategy 1)
offers the best performance in all the PT-FT cases, with respect to both R2

scores and MAEs, in contrast to generally applied PT/FT strategies, where
part of the model is frozen for FT. This indicates that the FT requires a
significant amount of re-training for the models to become generalized
enough on the FTproperty. The performance of FT strategy 1 is followed by
FT strategy 4 (unfreezing two-body layers followed by three-body layers).
The good performance of FT strategy 4 is a further indication that re-

training of several layers is required for accurate FT and suggests that the
majority of the model performance in ALIGNN is being governed by the
bond graph layers followed by the line graph layers. Overall, we identify FT
strategy 1 to be the best performer among the strategies considered in
this work.

Pair-wise TL for 7 × 6 combinations
By keeping the PT and FT sizes as 941 and 800 (corresponding to our
smallest dataset size) and the FT strategy as 1,we analyze the performanceof
pair-wise TL on all 7 × 6 PT-FT combinations that are possible among the
seven datasets considered in this work. Figure 3a, b display heatmaps
containing the test R2 scores (lower triangles) and test MAEs (upper tri-
angles) for all the seven scratchmodels (for dataset size of 800) and the 7 × 6
combinations, respectively. The performance of the FT models (panel b in
Fig. 3) is compared against scratch models (panel a), i.e., the comparison is
against metrics along each column of the two panels (see Table S18 for
percentage change inR2 andMAEof PT-FT vs. scratchmodels). The yellow
highlighted boxes indicate the best pair-wise models (highest R2 and lowest
MAE) for eachFTdataset. Themargin of error for eachPT-FT combination
after the five random trials are tabulated in Tables S16 and S17, which also
includes data for different FT dataset sizes apart from 800 (namely, 10, 100,
200, and500). Figure S18 visualizes thedata compiled inTables S16 andS17.

We can observe from Fig. 3b that the TL models outperform the
scratch models in all FT cases (with 800 datapoints), with an average per-
centage increase in R2 score and MAE of 24.82% and 15.00%, respectively.

0.947 0.936 0.609 0.009 0.687 0.461

0.774 0.938 0.611 0.012 0.661 0.442

0.774 0.946 0.609 0.014 0.677 0.459

0.768 0.946 0.936 0.007 0.697 0.452

0.772 0.947 0.938 0.607 0.681 0.436

0.768 0.940 0.936 0.598 0.001 0.449

0.766 0.940 0.934 0.619 0.012 0.680

0.031 0.048 0.129 0.049 0.019 0.091

0.089 0.047 0.128 0.049 0.020 0.093

0.089 0.031 0.128 0.049 0.019 0.092

0.090 0.030 0.048 0.049 0.019 0.093

0.089 0.030 0.048 0.128 0.019 0.093

0.090 0.032 0.048 0.130 0.050 0.092

0.090 0.032 0.049 0.126 0.049 0.020

0.0

0.2

0.4

0.6

0.8

1.0

EBG

DC

DC800

PZ

BG

FE

PH

EBG800

GV

800

PH FE BG PZ DC EBG

1.0

0.6

0.4

0.2

0.0

0.8

0.742 0.904 0.913 0.572 -0.039 0.653 0.415

0.096 0.043 0.057 0.142 0.056 0.022 0.104
(a)

(b)

PZ800

GV

GV800 PH800 FE800 BG800 DC800 EBG800
40

20

0

20

40

Pe
rc

en
ta

ge
 c

ha
ng

e

GV800 PH800 FE800 BG800(c)

MP-R2 scores
PT(best-size)-R2 scores
MP-MAE
PT(best-size)-MAE

Fig. 3 | Performance of pair-wise TL and MPT models. a Test R2 scores (lower
triangles) and MAEs (upper triangles) for scratch models trained on the seven
datasets. The x and y labels represent the dataset name and size. b Performance of
pair-wise TL for the 7 × 6 combinations. The y labels represent the PT datasets, and
the x labels display the FT datasets and sizes (i.e., 800 datapoints for all FT). The best-
performingmodels are highlighted by yellow boxes. cPercentage change inR2 scores
(blue bars) andMAEs (orange bars) of theMPT (hashed bars) and PT(best-size)-FT
(solid bars) models with respect to scratch.

https://doi.org/10.1038/s41524-024-01486-1 Article

npj Computational Materials |          (2024) 10:300 4

www.nature.com/npjcompumats


Additionally, the pair-wise models achieve an equivalent performance at
fewer datapoints compared to scratchmodels trained on larger dataset sizes
(see Fig. S19 for a compilation). For example, the R2 score andMAE for the
scratchmodel GV800 are 0.742 and 0.096, respectively (Fig. 3a).We obtain
an equivalent performance with the PH-GV500 model, which exhibits a
similar R2 score and MAE of 0.722 and 0.099 while using 300 fewer data-
points than scratch (Figs. S18e and S19).

The best PT model for each FT dataset is different, and there is no
obvious physical correlation between them in several cases. For example, PT
withGVyields thebestFTmodelwithEBG, even thoughbothproperties are
not directly correlated (Fig. 3b). Additionally, there is no symmetrical
relationship between the datasets that constitute the best-performingPT-FT
pairs. For instance, PTwith FE offers the best scores forGV800, but PTwith
GV does not yield the best scores for FE800. Ignoring FT on PZ, no PT
dataset yields particularlyworse performance thanother datasets, indicating
that when PT dataset size is capped, the specific property being trained on
has little influence on FT. Among the FT datasets, we observe fairly good
performance for GV, PH, and FE (R2 score > 0.75), indicating that these
properties are easier to generalize. We get average-performing models for
BG, DC, and EBG (0.4 < R2 score <0.7), while PZ seems to be a particularly
difficult dataset to FT or train from scratch (∣R2score∣ < 0.1).

MPT model performance
Utilizing the cumulative dataset of 132,270 points, we compare the per-
formance ofMPTmodels upon FT (using strategy 1 with additionalMLPs)
on the sevendifferentproperties versus scratchand thebest pair-wisePT-FT
models, as illustrated in Fig. 3c. The percentage change in performance
(similar to the definition in section “Influence of PT dataset size”) of both
MPT and pair-wisemodels versus scratchmodels are plotted as hashed and
solid bars, respectively, in Fig. 3c. Blue (orange) bars indicate R2 scores
(MAEs), where positive (negative) values indicate an improved (worse)
performance of MPT/pair-wise models compared to scratch. We have
plotted the percentage change in performance upon FTwith PZ in Fig. S15b
for ease of visualization. Note that during PT of MPT models, all points
belonging to the 132,270 cumulative dataset are exposed, except the specific
property (and the corresponding one-hot encoded vector) that is subse-
quently FT.

For the sake of comparison, we cap the FT (training) dataset size to 800
in Fig. 3c for both MPT and pair-wise (scratch) models, with Tables
S19 and S20 tabulating the results for other FT dataset sizes with MPT.
Figure S18f visualizes the results tabulated in Tables S19 and S20. Using FT
strategy 1, we maximize the size of the PT dataset that gives the best per-
formance upon FT for each pair-wise model. For example, PT with FE and
BG yield the best performance upon FT with GV and DC, respectively (see
Fig. 3b). Hence, we use FT(100K) and BG(50K) as PT datasets for FT with
GVandDCand subsequently compare the obtained testR2 andMAEscores
with theMPTmodels. Similarly,we employ the full datasets of PH,EBG, FE,
and GV during PT followed by FT on FE, BG, PZ, and EBG, respectively, to
generate the best pair-wisemodels. In the case of PH, insteadof choosingPZ
forPT,we choose thenext bestmodel (i.e., BG(50K)) to increase thenumber
of PT datapoints.

As displayed in Figs. 3c and S15b, the MPT model FT on a given
property outperforms the corresponding scratch models in six out of seven
cases. The lowest performance improvement with MPT models compared
to scratch is observed in the case of the GV, with a ~2.7% increase. Addi-
tionally, the percentage of improvement in R2 scores for the MPT model is
higher than the corresponding best pair-wise PT-FT model in 3 out of 7
cases, while the improvement inMAEs for theMPTmodel is better than the
pair-wisemodels in 4 out of 7 cases. In the case of PZ, theMAEprediction is
the same in the case of bothMPT and the best pair-wise PT-FTmodel. The
highest reduction in MAE (23.53%) and the highest increase in R2 scores
(15.45%) for MPT compared to the best pair-wise models are observed for
FT with PH and EBG, respectively.

Interestingly, the MPTmodel FT on FE shows negative transfer as the
model shows lesser R2 scores (and higherMAEs) with respect to the scratch

model. We attribute this negative transfer behavior to the fact that the FE is
the largest dataset in our work, which results in poor PT of theMPTmodel
since a significant numberof structures only have FE as the sole datapoint in
our cumulative set (≈26K), all ofwhich are excludedduringPTcausingpoor
model generalization. Thus, the choice of large PT datasets, especially
containingdatapointswith at least onenon-zeroproperty, plays a significant
role in training effective and generalizable MPT models. Excluding FT on
FE,MPTmodels outperformbest pair-wisemodels onR2 scores in 3 out of 6
cases, and on MAEs in 4 out of 6 cases, highlighting their overall effec-
tiveness when utilized for TL.

MPT model on a completely unrelated dataset
Given that accessing larger datasets by includingmultiple properties during
PT improves model generalizability, we test our MPT framework on a task
where the materials are out-of-domain of those used used in the PT. We
choose the JARVIS-DFT 2D dataset26, consisting of DFT-computed band
gap for 1103 2D materials, as the out-of-domain dataset. For this exercise,
we PT a MPTmodel on all the seven properties combined, i.e., used all the
datapoints of the cumulative 132,270 dataset. Further, we trained a scratch
model on the 2D dataset and FT all best-size PT models (i.e., PT on
FE(100K), BG(50K), PH,GV, andEBG), to compare the performance of the
MPT model. We standardized and normalized the 2D dataset and split it
into 90% train and 10% test sets, with the 90% set used for FT (and training
the scratch model) by employing FT strategy 1.

The test R2 scores and MAEs for all models on the 2D dataset are
tabulated in Table 1. Importantly, the scores obtained from theMPTmodel
are better than all pair-wise PT(best-size) and scratch models. The
improvement in R2 scores and MAEs for the MPT model compared to
scratch is 5.67% and 15.54%, respectively, and 6.27% and 9.99% on-average
compared to thePT(best-size)models. Thepair-wisemodel that exhibits the
closest performance to the MPT model (~1.5% deviation in MAE) is
FE(100K), which is expected given that FE is the largest dataset among the
seven considered within the MPT model. Thus, we observe that our MPT
model can generalize well on datasets that are out-of-domain to its PT
datasets and indicates the employability of our MPT framework on other
distinct material properties.

Discussion
In this work, we presented efficient methods for utilizing TL to deal with
small dataset sizes that are typical ofmaterials science.Tooptimizepair-wise
TL in materials science, we chose seven different material property datasets
spanning a size range of 941 to 132,752 datapoints. Using a GNN-based
architecture, we considered different FT strategies and the influence of
dataset sizes both in PT and FT and optimized other hyperparameters. We
found the PT-FTmodels to outperform scratchmodels in terms ofR2 scores
and MAEs, often while being FT on fewer datapoints. Importantly, we
introduced anMPTmodel that was trained simultaneously on six out of the
seven properties considered, wherein our MPT models performed better
thanboth scratch and thebest pair-wisemodels uponFTon several datasets.

Table 1 | Performance of scratch, MPT, and PT(best-size)
models on the JARVIS-DFT 2D band gap dataset

PT models R2 score MAE

Scratch 0.635 0.148

MPT 0.671 0.125

FE(100K) 0.670 0.127

BG(50K) 0.617 0.138

PH(1256) 0.628 0.145

GV(10987) 0.626 0.143

EBG(2481) 0.619 0.143

MPTmodel considered here is trained on the full cumulative dataset comprising all seven properties
considered. Both R2 scores and MAEs listed are for the test dataset.
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Also, the MPT model that was trained on all seven properties simulta-
neously offered the best performance upon FT on a completely out-of-
domain dataset consisting of DFT-computed 2D material band gaps. Our
work provides foundational advancements in efficiently performing TL on
several materials-based datasets.

On comparing our models with models from previous works, we
observe a significant reduction in the number of datapoints required for PT
and FT. For example, theMAEs obtained by Lee andAsahi22 for FE500 and
BG500 are 0.149 and 0.866, respectively. Our models on the same dataset
show a MAE of 0.204 and 0.688 for the same number of FT FE and BG
datapoints, respectively, but utilizing three orders of magnitude lower
datapoints during PT (see Table S21).

The distribution of datapoints in the sevendatasets (Fig. 4b) chosen for
our study is different, with four datasets (BG, PZ, DC, and EBG) showing a
highly skewed (i.e., log-normal) distribution than the others (GV, PH, and

FE). Consequently, our models PT on PZ show poor performance even
before FT, which may arise from the skewed nature of the dataset, possibly
resulting in uneven representation within the train and test sets. Addi-
tionally, from our 7 × 6 pair-wise TL models, we observe PT on normally
distributed datasets yield the best FTperformance for four out of seven cases
(Fig. 3a).Also, incorporating the larger amountofPTdatawithFE (i.e., from
50K to 100K datapoints) always resulted in better FT models, while going
from50K to 100Kwith a skewedBGdataset during PT did not always result
in better FTmodels (Fig. 2a, b). Hence, we expect TLmodels that are PT on
normally distributed data to generally outperform models that are PT on
skewed datasets.

Apart from the hyperparameters optimized in this work (section
“Hyperparameter tuning”), batch size can be an important hyperparameter
as well. We observed lower batch sizes to offer comparable or better per-
formance for smaller dataset sizes (<1000) in pair-wise TL, motivating us to

Fig. 4 | Architecture of ALIGNN and the distribution of the seven datasets.
a Schematic describing the ALIGNN architecture. Each block corresponds to one
layer of the model. The dimension of the embeddings is given in the bottom right
corner within each layer. b The standardized and normalized distributions of the

seven datasets are represented in the form of violin plots. The length of the black box
inside each violin summarizes the interquartile range of the corresponding data,
while the white circle within each box indicates the median.
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fix a batch size of 16 for smaller datasets. For larger datasets (>1000) in pair-
wise TL, we used a batch size of 64, as reported in previous work25. A smaller
batch sizeusually leads to amore complete explorationof theparameter space
and a reduced risk of the model becoming trapped in a sub-optimal local
minimum in the parameter space, resulting in a model that typically gen-
eralizes better. However smaller batch size also leads to longer training times
due to less-optimal utilizationof compute-resourceparallelizationand slower
convergence of the loss function.We believe that we have used optimal batch
sizes in our work since both pair-wise TL and MPTmodels outperform our
scratchmodels. Nevertheless, further optimizations of batch size, particularly
for large datasets, may improve performance. Note that model performance
may also be improved by utilizing better FT strategies than those proposed in
this work, such as combining strategies 1 and 2 (Fig. 6).

In the case of theMPT framework, we observe significant variations in
themodel performance when different properties are combined during PT.
A general trend is that both PT and FT losses tend to decrease with the
increase in the number of properties that the model is trained on simulta-
neously, which is illustrated in section S4 and Fig. S14 of the SI. Therefore, it
will be interesting to identify the best combinations of PT datasets across a
wider range than considered in this work for constructing an optimal MPT
model and improving knowledge transfer.

All the predictions in our study are graph-level predictions, i.e.,
properties that depend on the (graphical representation of the) entire
structure. Given that GNNs can also yield atomic (node) and bond (edge)
level properties, it would be interesting to explore TL frameworks and
strategies to predict properties at such levels (e.g., defect formation energies,
site energies, bonddissociation energies, etc.).Another pathway to explore is
the implementation of active learning to further improve the TL model
performance on the target dataset by iteratively selecting and re-training the
most important instances of the dataset. The active learning strategy might
be useful for target properties that are more scarce than those we have
considered here.

We expect our TL framework to be transferrable to other GNNs,
includingones that exhibitmore complex architectures thanALIGNN, such
as NequIP32 and MACE33. However, we expect GNNs that ignore critical
structural information, such as bond angles, to exhibit inferior performance
than ALIGNN while utilizing similar TL strategies and hyperparameters.
On the other hand, more complex GNN frameworks can be prone to over-
fitting due to the higher number of parameters (and hyperparameters)7.
Thus, the TL framework proposed here may require modifications if more
complex and deeper GNNs are utilized.

In conclusion, we provide an improved TL paradigm for effective
knowledge transfer from source datasets to target datasets with a restricted
amount of datapoints, which is highly relevant for materials science. By
comparing generated R2 scores and MAEs with scratch models, we rigor-
ously investigated the impactof the size of theFTandPTdatasets and theFT
strategy on the performance of pair-wise TLmodels.We observedpair-wise
models to generally outperform scratch models across seven different
materials property datasets. Additionally, we looked at training a model on
several characteristics of the data at once and compared the performance of
such MPT models versus both scratch and pair-wise models. In several
cases, we found the MPT models to perform better (or similar) to the
equivalent pair-wise models. Importantly, we observed the MPT model to
perform significantly better than both scratch and pair-wise models upon
FT on a 2D material dataset that was entirely out-of-domain from the PT
data, highlighting the effectiveness of our MPT framework. With quanti-
tative improvements inmodel performance, ourGNN-basedTL framework
offers a comprehensive architecture that can lead to better predictions
among data-scarce material property datasets at a low computational cost
and accelerate materials discovery.

Methods
Graph neural network
GNNs offer a natural way to model molecules and solids: the nodes and
edges in the graph correspond to the atoms (or molecules) and the

interactions (or bonds) between them, respectively. Thus,GNNs capture the
inherent connectivity among atoms/molecules and their local environment,
which typically leads to better property predictions. Different GNN archi-
tectures have been proposed in the literature, such as CGCNN23 and its
improved version (iCGCNN34), materials graph neural network
(MEGNet)35, crystal Hamiltonian graph neural network (CHGNet)36, and
SchNET37.WeuseALIGNN(v2023.04.01) in thiswork as it has been shown
to achieve high performance on materials property predictions and to
generalize quite well out-of-distribution7.

Figure 4a depicts the ALIGNN architecture consisting of seven layers
in total, beginning with initial layers (1, 2, and 3) that convert structural
information into atom (X), bond (Y), and bond angle (Z) embeddings. X, Y,
andZembeddings serve as inputs to theN (layer 4), andM(layer 5) layers of
edge-gated graph convolutions (E-GGC38). Layers 4 and 5 are usually
referred to asALIGNNlayers. Subsequently, global averagepooling (layer 6)
aggregates node information, which finally passes through a single fully
connected prediction layer (layer 7). Note that ALIGNN includes bond
angle information by using two crystal graphs, namely, an atomistic bond
graph (or two-body layers), and a line graph (three-body layers). Nodes and
edges in the atomistic bond graph represent atoms and bonds, while in the
line graph, they correspond to bonds and bond angles, respectively. The line
graph is derived from the bond graph, and the updates to the edges and
nodes in both graphs are obtained via E-GGC. Detailed information on the
ALIGNNarchitecture and the defaultmodel configuration that we used can
be found in prior work25 and Table S1 of the Supporting Information (SI).

Dataset description
The datasets we have chosen in this study, which combine both computa-
tional and experimental quantities, are described below. Figures S1-S7 of the
SI illustrate the distribution of the crystal systems in each dataset. Addi-
tionally, Table S2 compiles the maximum, minimum, standard deviation,
and average values of each dataset.

1. GV: the average shear modulus for 10,987 materials, computed using
DFT and sourced from the MP database.

2. PH: the highest frequencyof the optical phononmode peak (in units of
cm−1) for 1265 materials, obtained from DFT calculations of Petretto
et al.39.

3. FE: theDFT formation energy for 132,752materials collected from the
MP database.

4. BG: the DFT-calculated band gap for 106,113 structures sourced from
the MP database. The band gaps are calculated at the Perdew-Burke-
Ernzerhof level of electronic exchange-correlation40.

5. PZ: the piezoelectric modulus for 941 structures, computed through
DFT calculations by Jong et al.41. PZ represents the smallest dataset
among those considered in this work.

6. DC: the average eigenvalues of the total contributions to the dielectric
tensor for 1056 structures, as calculated by Petousis et al.42.

7. EBG: the experimental band gap data for 4604 structures, compiled by
Kingsbury et al.43.

Dataset cleanup
In order to ensure uniformity when comparing data reported in different
scales or units, we standardized and normalized all values within each
dataset considered. Figure 4b displays the distribution of the standardized
and normalized values within each dataset as violins. Note that the BG, PZ,
DC, and EBG follow a log-normal distribution compared to the GV, PH,
and FE datasets.We used the standardized and normalized values for all PT
and FT experiments throughout this work.

Figure 5a describes the workflow of pair-wise TL among the seven
datasets. Each dataset is split randomly into training and testing samples in a
ratio of 90:10. Note that we used only the training data statistics for stan-
dardization and normalization to avoid data leakage44. The test dataset is
neverused inanyof thePTorFT stages inpair-wiseTL, either for trainingor
validation. We further split the training data in the ratio 90:10 for training
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andvalidation for all thePT-FTexperiments.We report anduse theR2 score
and MAE on the test dataset to gauge the model performance in the fol-
lowing sections. The distribution of datapoints among the train and test
splits for each dataset is compiled in Figs. S8–S11 of the SI.

First, we construct ALIGNN models that are trained individually on
each of the seven datasets (of different sizes from the 90% training data),
which signify our PT models. Subsequently, we test the models on the
corresponding 10% test dataset,which represents theR2 scores andMAEsof
our scratch models. Finally, we FT each PT model on the remaining six
datasets, leading to 7 × 6 pairs of PT-FTmodels, which are denoted by ‘PT-
FT’. For example, BG-FE implies that themodel was PT and FT on BG and
FEdatasets, respectively.Where relevant, we specify the dataset size used for
PT in a pair-wise model as ‘PT(size)-FT’. Thus, BG(1K)-DC refers to a
model PT on the BG dataset with 1000 datapoints and subsequently FT on
the DC dataset.

Fine-tuning strategies
We have tested four different strategies of FT that are possible in a GNN-
based architecture, as illustrated in Fig. 6 and described below. The para-
meters of the PTmodel that are kept fixed (not fixed) during FT are referred
to as frozen (unfrozen) layers, as represented by solid blue (black outlined)
boxes in Fig. 6. The layer-number nomenclature for each FT strategy in
Fig. 6 is identical to Fig. 4a.
• FT strategy 1: Unfreeze all layers of ALIGNN

All the parameters in the PT model’s seven layers are loaded as
initializations and subsequently allowed to be re-computed during
FT. Thus, this strategy gives the maximum degree of freedom
available for the model to update itself during FT.

• FT strategy 2: Add a new prediction head
A new multi-layer perceptron (MLP) layer is added before the
prediction head. The parameters of the other six layers of the PT
model are fixed apart from the final modified layer. Hence, only the
fully connected linear MLP introduced before the prediction head is
allowed to re-train on the target property.

• FT strategy 3: Unfreeze only the last layer

This is the conventional idea of re-training only the last layer of a DL
model in TL. Thus, we re-train only the final layer of the ALIGNN
architecture keeping the parameters of the other six layers fixed. This
strategy provides the least degree of freedom for themodel to update
itself during FT.

• FT strategy 4: Unfreeze selective (interaction) layers
The two-body interaction layers (bond graphs) corresponding to the
4th and the 5th layers of ALIGNN or the three-body interaction layers
(line graphs) within the 4th layer are allowed to be unfrozen while
keeping the rest of the model constant.

Hyperparameter tuning
Apart from the FT strategy, there are other important hyperparameters
(listed below and illustrated in the second block of Fig. 5a) that need to be
optimized for bothpair-wise andMPTTL.Given the largenumberofPT-FT
combinations that canbecreatedamong thepair-wisemodels foroptimizing
hyperparameters, we chose the following set of PT-FT pairs: BG-FE, FE-BG,
DC-BG, andBG-DC.The choice of the above PT-FTpairswasmotivated by
(i) the presence or absence of physical correlation between properties (e.g.,
DC-BG are correlated, but FE-BG are not), (ii) the difference in data dis-
tribution between PT and FT sets (e.g., FE is bimodal while BG is log-
normal), and (iii) the inclusion of the largest two datasets (BG and FE).

We used 90% of the full dataset, which is further split 90:10 for training
and validation, for PT in all hyperparameter-tuning experiments. We fixed
the FT dataset size to 500 (only for hyperparameter-tuning), and chose the
conventional FT strategy 3 (Fig. 6) to optimize the hyperparameters, unless
otherwise specified. Note that we used the set of optimized hyperparameters
from this exercise for MPT TL as well. The details of each hyperparameter
optimization are compiled in section S3 of the SI (see Tables S3–S6). After
optimizinghyperparameters,weperformedfivedifferent (random) sampling
trials for eachTL experiment,with average values used for all illustrations and
margins of errors for confidence intervals of 95% reported in the SI.

Data sampling. Theway the available data is sampled during FT can play
a role in the model performance. This is because we capped the FT

Dataset
10% : Test

90% : Train
S&N Train

Data sampling Learning rate

Optimized hyper-parameters

Freeze 
selective layers

Add new 
predition head

Unfrozen layers No. of datapoints

Hyper-parameter tuning for pair-wise TL

Pair-wise TL for 7   6 datasets

Standardize(S) and Normalize(N)
using training dataset statistics

Pair-wise transfer learning

Influence of FT 
strategy

Unfreeze all 
layers

Tuned hyper-parameters from pair-wise 
TL models

Test the model

Compare with the scratch model

Multi-property training

Cumulative dataset of all properties

Pre-train on all (but 1) properties 
simultaneously

Compare with the scratch and 
best pair-wise models

FT on the desired property

Test the model

(a) (b)

×

S&N Test

Dataset
10% : Test

90% : Train
S&N Train

Standardize(S) and Normalize(N)
using training dataset statistics

S&N Test

Fig. 5 | Workflow of pair-wise TL and MPT. a Schematic illustrating the workflow for pair-wise TL for the seven properties of interest, and b for MPT.
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datasize to 500, which is fewer than the smallest dataset that we have
considered (i.e., PZ with 941 datapoints), for all our hyperparameter-
tuning exercises. Thus, we selected the 500 FT datapoints by random,
weighted, and uniform sampling for the PT-FT pairs mentioned above.
Importantly, we identify random sampling to perform better than the
other two techniques in all PT-FT pairs except BG-FE (see Fig. S12a).

Learning rate. To estimate the optimal learning rate for FT, we evaluated
the model performance (quantified by R2 scores) for select PT-FT pairs
with four different learning rates (10−2,10−3,10−4, and 10−5). We used
random sampling and model configuration as tabulated in Table S4.
Notably, we observe that a higher learning rate (10−2 or 10−3) offers better
model performance (seeTable S5), whichmaybe attributed to theneed for
greater re-training of parameters in our tasks than in vision and language
tasks45,46. The need for a higher learning rate suggests that PT of the graph
networks does not lead to a fully general feature extractor for materials
properties, but that the representations learned in each task are quite
specific to that particular task. It is possible that with larger and more
diverse training sets, the capacity of the graph network to extract general
features will increase. However, the features remain rather property-
specific for the data used in thiswork. Among the higher learning rates, we
find a rate of 10−3 to be marginally better than 10−2 owing to better
convergence and lower noise in validation R2 scores (see Fig. S13). To

verify that higher learning rates provide better performance even on
changing the FT strategy, we employed strategy 2 (from Fig. 6) for three
different learning rates (10−3,10−4, and 10−5). Importantly, we find similar
trends of highR2 scores at high learning rates (see Fig. S12b).Hence, wefix
the optimal learning rate as 10−3 for all subsequent experiments.

Number of frozen layers. Changing the number of frozen layers during
TL should impact how well the model re-trains on the FT dataset. To
explore this, we varied the number of frozen layers within the ALIGNN
architecture to be either 1 (the embedding layer) or 6 (until the final
layer), which represent two extreme scenarios. Additionally, we added a
new prediction head in both cases (similar to FT strategy 2). Importantly,
we find that the model performs better on the FT dataset with higher
number of unfrozen layers (see Figure S12b), suggesting that the PT
model requires significant updating to accurately perform the FT task.

Number of datapoints. To examine the influence of the size of the FT
dataset, we varied the FT dataset size from 500 to 1000. Expectedly, we
observe that the R2 scores increase as the FT dataset size increases (Table
S6). We have included a more detailed discussion on the influence of FT
dataset size in the section “Influence of FT dataset size”, where we present
our data on FT across multiple dataset sizes, ranging from 10 to 800
datapoints.

Fine-tuning strategies

5. Bond graph

[N] [N']

3. Angle embeddings 

[N] [N']

2. Bond embeddings

[N] [N']

1. Atom embeddings
BOND and LINE GRAPH

4. ALIGNN
BOND GRAPH 6. Pooling

AVERAGE 
POOLING

7. Linear MLP

Target

FT 2: Add new predition head

Embeddings ALIGNN Bond Graph

7. Linear MLP with new prediction head

Target

Pooling

FT 1: Unfreeze all layers

Frozen layers Unfrozen layers

FT 3: Unfreeze selective layers (only last layer)

Embeddings ALIGNN Bond Graph

7. FT on Linear MLP layer

Target

Pooling

FT 4: Unfreeze selective layers (2 or 3 body interactions)

2 Body interations

4. FT on bond graph 

2 Body interations

Embeddings Linear MLPALIGNN Line Graph 
(3 body interations) Pooling

 5. FT on bond graph 

Fig. 6 | The four FT strategies. Each dashed box panel signifies an FT strategy explored in this work. Blue boxes indicate frozen layers and unfrozen layers are indicated by
black outlined boxes. The contents within each unfrozen layer are indicated in each box, where the notations used within unfrozen layers are identical to Fig. 4a.
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Multi-property training
Given that pair-wise TLusing specific PT-FTpairs can be quite specific to the
property that they are trained for, we construct a more general PT model
involving multiple properties, similar to the multi-task learning model pro-
posed by Sanyal et al.47. While MPT has demonstrated better FT in material
property predictions47, the number of properties used in PT was small (2–3
properties). Also, previous attempts have explored multi-task learning
strategies48,49 inmoleculardatasets, suchasQM950.Herewebuild anextensive
MPT dataset considering seven different prediction targets by agglomerating
all the seven individual datasets considered in this work to yield a cumulative
dataset of 132,270points. Theworkflowused in constructing theMPTmodel
is given in Fig. 5b, and the model configuration is specified in Table S7.

For each datapoint (i.e., structure), we associate a one-hot encoded
vector and aproperty list vector, eachwith a dimension of seven.The former
describes if a particular property value is available for a structure, and the
latter gives the respective value of that property.We define amulti-property
loss function (per structure), as in Eq. (1), where N is the number of
properties, yp and yt are the predicted and target property values, i is the
property index, and δ is the one-hot vector entry per property.

L ¼ 1
N

XN

i¼1

∣yip � yit ∣δ
i ð1Þ

ToFTamodel on a specific property (e.g., BG),we train a singleMPTmodel
simultaneously on the remaining six properties (i.e., FE, GV, PH, PZ, DC,
and EBG). Note that we filter out the property information from all data-
points that are used in the FTprocess fromPT so that theMPTmodel is not
exposed to any of the FT datapoints. For instance, to FT on BG, we modify
the one-hot vector entry of all datapoints in the cumulative dataset that
contains a BG to zero so that the MPT model does not PT on any BG
information. During PT, the embedding obtained from the graph
convolutions of ALIGNN (i.e., after layer 6) is passed to fully connected
individualMLPs dedicated to each of the six PTproperties considered.After
PT, theMTPmodel is FTby adding twoextra layers ofMLP to thePTmodel
before the prediction head and re-training the entire configuration on the
desired target property.

Data availability
All computed data and constructed models associated with this work are
available online freely to all via our GitHub repository.

Code availability
All codes related to this work are available online freely to all via ourGitHub
repository. The source code of ALIGNN is available at the GitHub reposi-
tory maintained by the developers of ALIGNN.
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