Phase Behavior in Rhombohedral NaSiCON Electrolytes and Electrodes
 -Supplementary Information-

Zeyu Deng, ${ }^{*, \dagger}$ Gopalakrishnan Sai Gautam, ${ }^{\ddagger}$ Sanjeev Krishna Kolli, ${ }^{\text { }}$ Jean-Noël Chotard, ${ }^{\S}, \|$ Anthony K. Cheetham, ${ }^{\perp,{ }^{\Upsilon}}$ Christian Masquelier, ${ }^{\S}, \|$ and Pieremanuele Canepa*, ${ }^{\perp}$
\dagger Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
\ddagger Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
【Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
§Laboratoire de Réactivité et Chimie des Solides, UMR CNRS \#7314, Université de Picardie Jules Verne, 80039 Amiens Cedex, France
||RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS \#3459, F-80039 Amiens Cedex 1, France
\perp Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore
E-mail: msedz@nus.edu.sg; pcanepa@nus.edu.sg

Contents

S1 Model Structure of $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ 3
S2 Analysis of the Effective Cluster Interactions 4
S3 Basis of the Cluster Expansion and ECI assignation 9
S4 Thermodynamic Integration 10
S5 Monte Carlo Snapshot and Ground States Structures 13
S6 P^{5+} Migration Barrier in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ 15
References 16

S1 Model Structure of $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$

Table S 1 shows the atom labels and coordinates of the model-structure cell of $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ on which the cluster expansion is fitted.

Table S1: Atom labels and fractional coordinates of the model-structure cell of $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ in the rhombohedral representation. Space group $R \overline{3} c$ No. 167, lattice constants $a=9.099 \AA$ and $\alpha=60.634^{\circ}$ as obtained from Ref. 1, ICSD \# 15546, with stoichiometry $\mathrm{Na}_{4} \mathrm{Zr}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$. The types of Na , i.e. $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ in reference to Figure 1 in the main article are also indicated.

Atomic species	Label site	x	y	z
$\mathrm{Na} / \mathrm{Va}$	$0 \mathrm{Na}(1)$	0.500000	0.500000	0.500000
$\mathrm{Na} / \mathrm{Va}$	$1 \mathrm{Na}(1)$	0.000000	0.000000	0.000000
$\mathrm{Na} / \mathrm{Va}$	$2 \mathrm{Na}(2)$	0.889670	0.610330	0.250000
$\mathrm{Na} / \mathrm{Va}$	$3 \mathrm{Na}(2)$	0.610330	0.250000	0.889670
$\mathrm{Na} / \mathrm{Va}$	$4 \mathrm{Na}(2)$	0.250000	0.889670	0.610330
$\mathrm{Na} / \mathrm{Va}$	$5 \mathrm{Na}(2)$	0.389670	0.750000	0.110330
$\mathrm{Na} / \mathrm{Va}$	$6 \mathrm{Na}(2)$	0.750000	0.110330	0.389670
$\mathrm{Na} / \mathrm{Va}$	$7 \mathrm{Na}(2)$	0.110330	0.389670	0.750000
Zr	8	0.352810	0.352810	0.352810
Zr	9	0.852810	0.852810	0.852810
Zr	10	0.647190	0.647190	0.647190
Zr	11	0.147190	0.147190	0.147190
Si/P	12	0.545440	0.954560	0.250000
Si/P	13	0.954560	0.250000	0.545440
Si/P	14	0.250000	0.545440	0.954560
Si/P	15	0.045440	0.750000	0.454560
Si/P	16	0.750000	0.454560	0.045440
Si / P	17	0.454560	0.045440	0.750000
O	18	0.432310	0.228140	0.579990
O	19	0.228140	0.579990	0.432310
O	20	0.579990	0.432310	0.228140
O	21	0.932310	0.079990	0.728140
O	22	0.079990	0.728140	0.932310
O	23	0.728140	0.932310	0.079990
O	24	0.567690	0.771860	0.420010
O	25	0.771860	0.420010	0.567690
O	26	0.420010	0.567690	0.771860
O	27	0.067690	0.920010	0.271860
O	28	0.920010	0.271860	0.067690
O	29	0.271860	0.067690	0.920010
O	30	0.469130	0.125870	0.329030
O	31	0.125870	0.329030	0.469130
O	32	0.329030	0.469130	0.125870
O	33	0.969130	0.829030	0.625870
O	34	0.829030	0.625870	0.969130
O	35	0.625870	0.969130	0.829030
O	36	0.530870	0.874130	0.670970
O	37	0.874130	0.670970	0.530870
O	38	0.670970	0.530870	0.874130
O	39	0.030870	0.170970	0.374130
O	40	0.170970	0.374130	0.030870
O	41	0.374130	0.030870	0.170970

S2 Analysis of the Effective Cluster Interactions

Table S2 and Figure S1 report the characteristics of the 65 distinct effective cluster interactions (ECIs) of the $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ system in our cluster expansion (CE) model. Figure S1 plots the most significant ECIs (normalised by their multiplicity) as function of their index \#.

Table S2: ECIs. Point term $\mathcal{P} \mathcal{T}$, pair \mathcal{P}, triplet \mathcal{T}, and quadruplet \mathcal{Q} terms. Site refer to the label sites given in Table S 1 . Cell $[0,0,0]$ is the reference cell. M is the multiplicity of each cluster.

Index	Cluster Index	Type	Site(Label)	Cell	Min. (Å)	Max. (Å)	ECI (meV)	ECI/M (meV)
1	4	$\mathcal{P} \mathcal{T}$	$\mathrm{Na} / \mathrm{Va}(3)$	[$0,0,0$]	-	-	+54.194	+27.097
2	5	\mathcal{P}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(14) \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.055	3.055	-399.759	-33.313
3	6	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Na} / \mathrm{Va}(3) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.162	3.162	-435.435	-72.572
4	8	\mathcal{P}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(17) \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.710	3.710	-570.255	-47.521
5	12	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(6) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	4.727	4.727	-42.419	-3.535
6	13	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(15) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,1]} \end{gathered}$	4.922	4.922	+141.637	+11.803
7	14	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(5) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,1,-1]} \end{gathered}$	4.980	4.980	+58.296	+9.716
8	15	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \end{gathered}$	5.102	5.102	+1193.520	+99.460
9	19	\mathcal{P}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(15) \end{gathered}$	$\begin{gathered} {[0,0,1]} \\ {[1,-1,0]} \end{gathered}$	6.056	6.056	-385.829	-32.152
10	20	\mathcal{P}	$\begin{gathered} \mathrm{Si} / \mathrm{P}(14) \\ \mathrm{Na} / \mathrm{Va}(0) \\ \hline \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,1]} \end{aligned}$	6.173	6.173	+46.582	+3.882
11	21	\mathcal{P}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(14) \end{gathered}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \end{gathered}$	6.196	6.196	-17.857	-1.488
12	22	\mathcal{P}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(17) \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,1,0]} \end{aligned}$	6.220	6.220	-352.738	-29.395
13	24	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,1]} \end{aligned}$	6.465	6.465	+468.440	+39.037
14	27	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,1]} \end{gathered}$	6.519	6.519	+913.329	+76.111
15	30	\mathcal{P}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(15) \end{gathered}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,1]} \end{gathered}$	6.901	6.901	+339.229	+28.269
16	31	\mathcal{P}	$\mathrm{Na} / \mathrm{Va}(3)$	[0, 0, 0]	6.956	6.956	+11.663	+1.944

			$\mathrm{Na} / \mathrm{Va}(5)$	[0, 0, 0]				
17	32	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(15) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[1,0,0]} \end{aligned}$	7.012	7.012	+3.121	+0.260
18	33	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(7) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \end{gathered}$	7.263	7.263	-61.571	-5.131
19	34	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,0]} \end{gathered}$	7.406	7.406	+670.671	+111.779
20	36	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(16) \end{aligned}$		7.478	7.478	-145.242	-24.207
21	38	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(12) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,0]} \\ \hline \end{gathered}$	7.857	7.857	-445.839	-37.153
22	42	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(13) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[-1,1,0]} \end{gathered}$	8.083	8.083	+276.618	+23.051
23	44	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(14) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,0]} \\ \hline \end{gathered}$	8.198	8.198	-377.133	-31.428
24	46	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(5) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \end{gathered}$	8.483	8.483	+15.930	+2.655
25	49	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Na} / \mathrm{Va}(0) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[-1,1,0]} \\ \hline \end{gathered}$	8.570	8.570	-23.865	-1.989
26	50	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(15) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \end{gathered}$	8.608	8.608	+130.803	+10.900
27	52	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(7) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,0,-1]} \\ \hline \end{gathered}$	8.736	8.736	-46.095	-3.841
28	53	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(2) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,0]} \end{gathered}$	8.856	8.856	+11.860	+1.977
29	62	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(3) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,0,-1]} \end{gathered}$	9.186	9.186	-68.224	-11.371
30	63	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(3) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,0,-1]} \end{gathered}$	9.186	9.186	-142.789	-11.899
31	64	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(14) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,1,-1]} \end{gathered}$	9.186	9.186	-215.821	-17.985
33	65	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \hline \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,0,-1]} \end{gathered}$	9.186	9.186	-561.834	-93.639
33	66	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(14) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,1,-1]} \end{gathered}$	9.186	9.186	-21.014	-3.502
34	69	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(14) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,0,-1]} \\ \hline \end{gathered}$	9.309	9.309	+165.373	+13.781
35	71	\mathcal{P}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(16) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[-1,1,0]} \end{gathered}$	9.510	9.510	-142.597	-23.766
36	73	\mathcal{P}	$\mathrm{Na} / \mathrm{Va}(3)$	[0, 0, 0]	9.633	9.633	+21.698	+1.808

			$\mathrm{Si} / \mathrm{P}(13)$	[0, -1, 0]				
37	79	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(17) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[-1,0,1]} \end{gathered}$	9.838	9.838	+419.493	+34.958
38	82	\mathcal{P}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(12) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[-1,-1,1]} \end{gathered}$	9.879	9.879	+183.989	+15.332
Index	Cluster Index	Type	Site(Label)	Cell	Min. (\AA)	Max. (\AA)	ECI (meV)	ECI/M (meV)
39	84	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Si} / \mathrm{P}(14) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.056	3.739	-632.141	-52.678
40	85	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Si} / \mathrm{P}(13) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.162	3.739	-343.491	-28.624
41	86	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Si} / \mathrm{P}(17) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.478	3.739	+112.125	+9.344
42	87	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(16) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,1]} \end{aligned}$	3.056	4.626	-8.603	-0.717
43	88	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(12) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,0,0]} \\ {[0,-1,1]} \end{gathered}$	3.056	4.700	+147.373	+24.562
44	89	\mathcal{T}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(12) \\ & \mathrm{Si} / \mathrm{P}(13) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,1]} \\ {[-1,0,1]} \end{gathered}$	4.700	4.700	+36.538	+18.269
45	91	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(6) \\ & \mathrm{Si} / \mathrm{P}(13) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.162	4.727	+210.952	+17.579
46	92	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Na} / \mathrm{Va}(6) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.477	4.727	+2969.345	$+247.445$
47	93	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(17) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.056	4.922	+124.056	+10.338
48	96	\mathcal{T}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(15) \\ & \mathrm{Si} / \mathrm{P}(16) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,0,0]} \\ {[-1,0,1]} \end{gathered}$	4.626	4.922	+101.874	+8.490
49	98	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Si} / \mathrm{P}(13) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \\ {[0,0,0]} \end{gathered}$	3.055	5.102	-167.327	-13.944
50	99	\mathcal{T}	$\mathrm{Na} / \mathrm{Va}(3)$	$[0,0,0]$	3.4779	5.102	-483.709	-40.309

			$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Na} / \mathrm{Va}(1) \\ & \hline \end{aligned}$	$\begin{gathered} {[1,-1,0]} \\ {[1,0,1]} \\ \hline \end{gathered}$				
51	100	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Na} / \mathrm{Va}(7) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \\ {[1,0,0]} \end{gathered}$	4.727	5.102	+85.713	+7.143
52	101	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Na} / \mathrm{Va}(6) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \\ {[0,0,0]} \end{gathered}$	4.727	5.102	-193.556	-16.130
53	102	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Na} / \mathrm{Va}(2) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \\ {[0,-1,1]} \end{gathered}$	5.1025	5.1025	-96.748	-24.187
54	104	\mathcal{T}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Si} / \mathrm{P}(12) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.739	5.629	+913.076	+76.090
55	105	\mathcal{T}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(12) \\ & \mathrm{Si} / \mathrm{P}(17) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	4.626	5.629	+183.298	+15.275
56	107	\mathcal{T}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(12) \\ & \mathrm{Si} / \mathrm{P}(15) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	4.922	5.629	-64.742	-5.395
57	108	\mathcal{T}	$\begin{aligned} & \mathrm{Si} / \mathrm{P}(14) \\ & \mathrm{Si} / \mathrm{P}(12) \\ & \mathrm{Si} / \mathrm{P}(13) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	5.623	5.623	-110.756	-27.689
58	109	\mathcal{T}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(14) \\ \mathrm{Na} / \mathrm{Va}(2) \end{gathered}$	$\begin{gathered} {[0,0,0]} \\ {[0,0,0]} \\ {[-1,0,1]} \end{gathered}$	3.056	5.733	-15.573	-2.595
59	110	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(6) \\ & \mathrm{Na} / \mathrm{Va}(5) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,0,0]} \\ {[0,-1,1]} \end{gathered}$	4.727	5.733	-237.045	-19.754
60	111	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Na} / \mathrm{Va}(2) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[1,-1,0]} \\ {[0,0,0]} \end{gathered}$	5.103	5.733	-54.373	-9.062
61	112	\mathcal{T}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(4) \\ & \mathrm{Na} / \mathrm{Va}(2) \end{aligned}$	$\begin{gathered} {[0,0,0]} \\ {[0,-1,1]} \\ {[-1,0,1]} \end{gathered}$	5.733	5.733	-32.485	-16.243
Index	Cluster Index	Type	Site(Label)	Cell	Min. (Å)	Max. (Å)	ECI (meV)	ECI/M (meV)
62	113	\mathcal{Q}	$\begin{aligned} & \mathrm{Na} / \mathrm{Va}(3) \\ & \mathrm{Na} / \mathrm{Va}(0) \\ & \mathrm{Na} / \mathrm{Va}(6) \\ & \mathrm{Si} / \mathrm{P}(17) \end{aligned}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.162	4.727	-648.492	-54.041

63	115	\mathcal{Q}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Na} / \mathrm{Va}(6) \\ \mathrm{Si} / \mathrm{P}(13) \\ \mathrm{Si} / \mathrm{P}(17) \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \\ & \hline \end{aligned}$	3.056	4.922	-125.232	-10.436
64	118	\mathcal{Q}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Na} / \mathrm{Va}(0) \\ \mathrm{Si} / \mathrm{P}(13) \\ \mathrm{Si} / \mathrm{P}(17) \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,0]} \end{aligned}$	3.162	4.922	-748.192	-62.349
65	119	\mathcal{Q}	$\begin{gathered} \mathrm{Na} / \mathrm{Va}(3) \\ \mathrm{Si} / \mathrm{P}(14) \\ \mathrm{Na} / \mathrm{Va}(5) \\ \mathrm{Si} / \mathrm{P}(16) \end{gathered}$	$\begin{aligned} & {[0,0,0]} \\ & {[0,0,0]} \\ & {[0,0,1]} \\ & {[0,0,1]} \end{aligned}$	3.056	4.981	-55.110	-9.185

Figure S1: Relevant ECIs as function vs. their cluster index as fully detailed in Table S2. The point term is not shown.

S3 Basis of the Cluster Expansion and ECI assignation

An occupational basis was utilised and thus σ is assigned $\mathrm{Na}=0, \mathrm{Va}=1$, and $\mathrm{Si}=0, \mathrm{P}$ $=1$. Therefore only clusters which are occupied by Va (on $\mathrm{Na} /$ Va sites) and/or P (on Si / P sites) in a given structure contribute non-zero ECIs to the overall CE model. The sign of the ECIs identify whether the interactions are attractive (negative ECIs) or repulsive (positive ECIs) between Va, P and across Va and P. While an attractive ECI favors all sites in a given cluster to be occupied by Va and/or by P, a repulsive ECI favors the occupation of at least one of the sites in the cluster by Na or Si . Tables $\mathrm{S} 3, \mathrm{~S} 4$, and S 5 lists the most prominent, in terms of magnitude, attractive and repulsive pair, triplet, and quadruplet ECIs, respectively.

Table S3: Unique ECI pairs (in meV) normalised by their multiplicity.

ECI \#	Species	ECI
Attractive		
5	Va-P	-33.313
6	$\mathrm{Va}-\mathrm{Va}$	-72.572
8	$\mathrm{Va}-\mathrm{P}$	-47.521
19	$\mathrm{Va}-\mathrm{P}$	-32.152
22	$\mathrm{Va}-\mathrm{P}$	-29.395
36	$\mathrm{P}-\mathrm{P}$	-24.207
38	$\mathrm{Va}-\mathrm{P}$	-37.153
44	$\mathrm{Va}-\mathrm{P}$	-31.428
64	$\mathrm{P}-\mathrm{P}$	-17.985
65	$\mathrm{Va}-\mathrm{Va}$	-93.639
71	$\mathrm{Va}-\mathrm{P}$	-23.766
	Repulsive	
15	$\mathrm{Va}-\mathrm{Va}$	+99.460
24	$\mathrm{Va}-\mathrm{Va}$	+39.037
27	$\mathrm{Va}-\mathrm{Va}$	+76.111
30	$\mathrm{Va}-\mathrm{P}$	+28.269
34	$\mathrm{Va}-\mathrm{Va}$	+111.779
42	$\mathrm{Va}-\mathrm{P}$	+23.051
79	$\mathrm{Va}-\mathrm{P}$	+34.958

Table S4: Unique ECI triplets (in meV) normalised by their multiplicity.

ECI \#	Species	ECI
Attractive		
84	Va-Va-P	-52.678
85	Va-Va-P	-28.624
99	Va-Va-Va	-40.309
102	Va-Va-Va	-24.187
Repulsive		
92	Va-Va-Va	+247.445
104	$\mathrm{P}-\mathrm{Va}-\mathrm{P}$	+76.090

Table S5: Unique ECI quadruplets (in meV) normalised by their multiplicity.

ECI \#	Species	ECI/M (meV)
Attractive		
113	$\mathrm{Va}-\mathrm{Va}-\mathrm{Va}-\mathrm{P}$	-54.041
118	$\mathrm{Va}-\mathrm{Va}-\mathrm{P}-\mathrm{P}$	-62.349

S4 Thermodynamic Integration

As shown in Figure S2, the grand-canonical Monte Carlo (MC) scans were performed in the chemical potential (μ) and temperature (T) space. The scan started at $T=5 \mathrm{~K}$ and up to 1605 K with a step $\Delta T=5 \mathrm{~K}$ at $\mu=-1,0$ and $1 \mathrm{eV} /$ f.u. Then at every T, μ was scanned in both forward ($\mu=-1.0$ to $1.0 \mathrm{eV} /$ f.u.) and backward ($\mu=1.0$ to $-1.0 \mathrm{eV} /$ f.u.) directions with a step size of $\Delta \mu=0.005 \mathrm{eV} /$ f.u. as shown in Figure S2. In general, μ was scanned across 2 concentration ranges, namely, between $\mathrm{x}=0$ and $2(\mu=-1.0$ to $0.0 \mathrm{eV} / \mathrm{f} . \mathrm{u}$.$) , and$ $\mathrm{x}=2$ and $3(\mu=0.0$ to $1.0 \mathrm{eV} /$ f.u. $)$, due to the existence of the 3 ground-state structures on the convex hull ($\mathrm{x}=0,2$ and 3 , see manuscript).

The phase boundary was found at the intersections of the grand-canonical potential energy Φ^{α} for each phase α (A, B and C) as defined in Figure S2. Φ is defined by Eq. 1

$$
\begin{equation*}
\Phi=[E-\mathrm{T} S]-\mu c \tag{1}
\end{equation*}
$$

In panel
Figure S2: a Schematic showing how the phase boundary (dashed lines) was identified in the (μ, T) space. The arrows show both the MC scan and the thermodynamic integration directions. At phase boundaries, potential surfaces $\Phi^{\alpha}(\mu, T)$ on the both sides intersects with each other. The phase boundaries in the (x, T) space are then converted from the compositions at the phase boundary in (μ, T) space. b An example (at $\mathrm{T}=105 \mathrm{~K}$) of the grand potential (Φ) depending on chemical potential (μ, T), along with the strategy to choose the phase boundaries (pink circles) is shown. c Variation of composition x and normalized heat capacity C_{v} vs. μ, at $\mathrm{T}=445 \mathrm{~K}$, as obtained from the Monte Carlo simulations is displayed. Discontinuities in the chemical potential μ represent phase transitions at specific concentrations x and are indicated by dashed lines in black.
where E is the total energy predicted by the cluster expansion model, S is the configurational entropy and c is the parametric composition. The parametric composition c in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ is defined as in Eq. 2.

$$
\begin{equation*}
c=1-\frac{x}{3} \text { with } 0 \leq c \leq 1 \tag{2}
\end{equation*}
$$

For Monte Carlo scans at fixed μ and variable T, Φ is calculated using the thermodynamic integration in Eq. 3.

$$
\begin{align*}
\Phi(\beta, \mu) & =\frac{\beta_{0}}{\beta} \Phi_{0}\left(\beta_{0}, \mu\right)+\frac{1}{\beta} \int_{\beta_{0}}^{\beta}[E-\mu c] d \beta \tag{3}\\
\text { with } \Phi_{0}\left(\beta_{0}, \mu\right) & =E-\mu c \tag{4}
\end{align*}
$$

where $\beta=1 /\left(k_{B} T\right)$ and k_{B} is the Boltzmann constant.

In Monte Carlo scans at variable μ and fixed T, Φ is defined in Eq. 5.

$$
\begin{align*}
\Phi(\beta, \mu) & =\Phi_{0}\left(\beta, \mu_{0}\right)-\frac{1}{\beta} \int_{\mu_{0}}^{\mu} c d \mu \tag{5}\\
\text { with } \Phi_{0}\left(\beta, \mu_{0}\right) & =\Phi_{\text {heating }}\left(\beta, \mu_{0}\right) \tag{6}
\end{align*}
$$

Since the entropy effects are negligible at low temperatures (e.g., $T=5 \mathrm{~K}$), the starting values of Φ_{0} in T scans at 5 K are taken as $\Phi_{0}=E-\mu c$. The thermodynamic integration at each μ starts from the $\Phi_{\text {heating }}\left(T, \mu_{0}\right)$ where $\mu_{0}=-1,0$ and $1 \mathrm{eV} / \mathrm{f} . \mathrm{u}$., and is scanned both forward and backward in the Region I and Region II as shown in Figure S2a. One of the examples is shown in Figure S2b.

After the thermodynamic integration, the phase boundary is identified by the intersection of grand-canonical potential envelops in the (μ, T) space (dashed lines in Figure S2a) which is then converted into the $(x, \mathrm{~T})$ space. When the intersections is not well defined by the numerical data, discontinuities in c vs. μ and C_{v} vs. μ curves (see Figure S2c) are considered and the phase boundaries identified.

S5 Monte Carlo Snapshot and Ground States Structures

Figure S3 shows a snapshot from the Monte Carlo simulations and three ground state structures at $\mathrm{x}=0,2$ and 3 in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ (right panel).

Figure S3: In the left panel, a portion of a snapshot of a Monte Carlo simulation ($\mathrm{x}=2$, T $=445 \mathrm{~K}$), where a primitive cell of $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ is marked by the black hexagon (Na at both $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ sites are coloured silver). The primitive cells of the three ground state structures at $\mathrm{x}=0,2$ and 3 for $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ are shown on the right.

Figure S4 displays another view of the three ground-state orderings as isolated from our

DFT calculations.

Figure S4: Ground-state structures in the rhombohedral setting identified in the convex hull of Figure 2 of the main manuscript. Panel a, the ground-state structure at $\mathrm{Na}=1(\mathrm{x}=0)$, b ground-state structure at $\mathrm{Na}=3(\mathrm{x}=2)$, and \mathbf{c} ground-state structure at $\mathrm{Na}=4(\mathrm{x}=3)$ in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$. The different sodium sites $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ are identified by green and yellow balls. SiO_{4}^{4-} and PO_{4}^{3-} tetrahedra are shown in pink and blue, respectively.

At $\mathrm{Na}=1(\mathrm{x}=0)($ Figure $\mathrm{S} 4 \mathbf{a})$ only the $\mathrm{Na}(1)$ sites are occupied, whereas $\mathrm{Na}=3$ $(x=2)$ only the $\mathrm{Na}(2)$ sites are occupied (panel $\mathbf{b})$. In Figure S4c, which is a representation of $\mathrm{Na}=4(\mathrm{x}=3)$, both $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ sites are occupied. Notably, at both $\mathrm{Na}=1$ $(x=0)$ and $\mathrm{Na}=4(x=3)$ the $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ structure arranges into a rhombohedral symmetry $R \overline{3} c(167)$, whereas Si / P and Na ions $\mathrm{Na}=3(\mathrm{x}=2)$ are organised in the $C 2 / c$ (15) space group.

S6 $\quad \mathbf{P}^{5+}$ Migration Barrier in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$

Figure S 5 shows the migration barrier of a P^{5+} ion in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ via a vacancy mechanism. The migration barrier was computed using the nudged elastic band method ${ }^{2}$ and the DFT settings employed in the manuscript. To facilitate the convergence of this barrier we used Perdew, Burke, and Ernzerhof ${ }^{3}$ exchange and correlation functional. A large $2 \times 1 \times 1$ supercell of the conventional cell (with 288 atoms) was used to minimised the spurious interaction between adjacent migration paths. The total energy was converged to $1 \times 10^{-5} \mathrm{eV}$ and the forces on the elastic band to $100 \mathrm{meV} / \AA$.

Unsurprisingly, the displacement of a P^{5+} ions from the PO_{4}^{3-} moieties is extremely energy intensive (with a barrier of $\sim 4.02 \mathrm{eV}$, Figure S 5), and suggests that the redistribution of P and Si in $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ is highly inhibited even under high temperatures.

Figure S5: Migration barrier (in eV) of P^{5+} in the $\mathrm{Na}_{1+\mathrm{x}} \mathrm{Zr}_{2} \mathrm{Si}_{\mathrm{x}} \mathrm{P}_{3-\mathrm{x}} \mathrm{O}_{12}$ structure vs. the path distance.

References

(1) Qui, D.; Capponi, J.; Joubert, J.; Shannon, R. Crystal structure and ionic conductivity in $\mathrm{Na}_{4} \mathrm{Zr}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$. J. Solid State Chem. 1981, 39, 219-229.
(2) Sheppard, D.; Terrell, R.; Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 2008, 128, 134106.
(3) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

