Supporting Information for

Exploration of oxyfluoride frameworks as Na-ion cathodes

Debolina Deb and Gopalakrishnan Sai Gautam*

Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India

E-mail: saigautamg@iisc.ac.in

Projector Augmented Wave potentials

ELEMENT	POTENTIAL
Na	Na_pv 19Sep2006
Ti	Ti_pv 07Sep2000
V	$V_{-}pv 07Sep2000$
Cr	Cr_pv 02Aug2007
Mn	Mn_pv 02Aug2007
Fe	Fe_pv 02Aug2007
Со	Co_pv 23Apr2009
Ni	Ni_pv 06Sep2000
О	O 08Apr2002
F	F 08Apr2002

Table S1: Projector augmented wave potentials used to describe the core electrons of eachatomic species.

Choice of Hubbard U

Table S2: Comparison between experimental and the Hubbard U corrected strongly constrained and appropriately normed (SCAN+U) computed voltages. U values used were derived from experimental enthalpy data of transition metal oxides (TMOs) and transition metal fluorides (TMFs) for Ti (in TiOF₂ \rightarrow Li_{0.5}TiOF₂¹) and V (in VO₂F \rightarrow LiVO₂F²). The U values based on TMOs and TMFs were derived in previous studies.^{3,4} For Li_xTiOF₂ system, the experimental study reports a voltage range for intercalation rather than an average value.

 $TiOF_2 \leftrightarrow Li_{0.5}TiOF_2$

 $\mathbf{VO}_{2}\mathbf{F} \leftrightarrow \mathbf{LiVO}_{2}\mathbf{F}$

METHOD	VOLTAGE (V)	METHOD	VOLTAGE (V)
Experimental	2.8 - 1	Experimental	2.9815
U in TMO (2.5 eV)	2.80252	U in TMO (1 eV)	3.3022
U in TMF (4.5 eV)	3.27898	U in TMF (4.2 eV)	4.2013

Determination of additional Na sites

Several O-rich 3d transition metal oxyfluorides (TMOFs), i.e., NaMO₂F with M= Ti, V, Mn, Fe, and Co, are predicted to crystallize in the monoclinic (P2/b) space-group. However, due to absence of any monoclinic A₂MO₃ perovskite in the inorganic crystal structure database (ICSD),⁵ where A could be any cation, the site coordinates for the accommodation of an additional Na-ion in monoclinic NaMO₂F must be determined theoretically, with the constraint of minimizing electrostatic repulsion between the existing and introduced Na. **Figure S1** illustrates the calculation of the coordinates for the additional Na sites, as well as the displaced positions of the existing Na sites. The calculation for the site labelled 'Na3' has been used as a reference in NaTiO₂F (see top half of **Figure S1**), where Na3 is displaced to its new position with coordinates (A3, B3, C3), while the additional Na will occupy the (a3, b3, c3) site. The same calculation process is followed for all Na-ions present in monoclinic NaMO₂F.

For NaNiO₂F, the lowest energy polymorph is an orthorhombic lattice, and its lattice parameters are similar to the monoclinic-NaMO₂F. Thus, we used a calculation procedure similar to the monoclinic polymorph for the orthorhombic as well, indicated by the reference calculation for the 'Na3' site showed in the bottom half of **Figure S1**. In the case of NaCrO₂F, the ground state polymorph is rhombohedral ($R\overline{3}c$). We used the additional Li sites from rhombohedral Li₂ReO₃ from the ICSD (Collection ID: 200999) as the additional Na sites in NaCrO₂F.

Figure S1: Determination of the additional Na site coordinates in monoclinic NaTiO₂F (top half) and NaNiO₂F (bottom half) is demonstrated. The calculation for the 'Na3' site is used as a reference. The existing Na3 site shifts to the (A3, B3, C3) coordinates, while the new Na site is added at (a3, b3, c3) coordinates. In monoclinic NaTiO₂F the new Na sites are introduced along the face-diagonal, while in orthorhombic-NaNiO₂F the sites are introduced along the *c*-axis. The blue polyhedra represent TiO_4F_2/NiO_4F_2 octahedra, and the yellow spheres are Na sites/atoms. Red and grey spheres are O and F atoms, respectively. The solid black line denotes the unit cell.

Identification of groundstate polymorph

Table S3: Percentage normalised relative energies between the groundstate and higher energy polymorphs of charged perovskites, namely O-rich NaMOF₂ and F-rich MOF₂ (M= 3d transition metal). Ground states and highest energy polymorphs are represented by 0% (blue fonts) and 100% (red fonts), respectively.

NaMO ₂ F	$Pm\overline{3}m$	P4mm	Pbnm	P63/mmc	$R\overline{3}c$	P2/b
NaTiO ₂ F	87.57	100.00	3.90	73.46	9.90	0.00
NaVO ₂ F	40.97	100.00	2.98	47.14	14.49	0.00
NaCrO ₂ F	57.61	100.00	0.00	8.67	9.15	9.97
NaMnO ₂ F	83.12	100.00	7.58	7.23	20.25	0.00
NaFeO ₂ F	47.94	90.83	2.44	100.00	1.05	0.00
NaCoO ₂ F	52.57	100.00	4.84	50.19	4.42	0.00
NaNiO ₂ F	40.63	100.00	2.39	84.52	0.00	0.20

O-rich NaMO₂F

F-rich MOF₂

MOF_2	$Pm\overline{3}m$	P4mm	Pbnm	P63/mmc	$R\overline{3}c$	P2/b
TiOF ₂	39.64	93.62	0.00	100.00	0.37	0.04
VOF_2	30.17	35.10	0.00	100.00	2.19	1.15
$CrOF_2$	46.58	51.93	5.04	100.00	0.00	2.44
$MnOF_2$	15.54	100.00	6.74	45.11	0.00	5.18
$FeOF_2$	59.67	50.14	0.00	100.00	49.99	43.97
$CoOF_2$	47.86	66.81	40.90	100.00	43.47	0.00
NiOF ₂	36.31	100.00	8.88	51.84	0.00	8.56

Table S4: Relative energies between the groundstate and higher energy polymorphs of charged perovskites, namely O-rich NaMOF₂ and F-rich MOF₂ (M= 3d transition metal). Ground states and highest energy polymorphs are represented by blue fonts and red fonts, respectively. All energies are in units of eV/f.u.

$NaMO_2F$	$Pm\overline{3}m$	P4mm	Pbnm	P63/mmc	$R\overline{3}c$	P2/b
NaTiO ₂ F	0.343	0.392	0.015	0.288	0.039	0.000
$NaVO_2F$	0.132	0.323	0.010	0.152	0.047	0.000
$NaCrO_2F$	0.311	0.541	0.000	0.047	0.049	0.054
$NaMnO_2F$	0.378	0.455	0.034	0.033	0.092	0.000
NaFeO ₂ F	0.067	0.127	0.003	0.139	0.001	0.000
NaCoO ₂ F	0.109	0.208	0.010	0.104	0.009	0.000
NaNiO ₂ F	0.505	1.242	0.030	1.050	0.000	0.002

O-rich NaMO₂F

F-rich MOF_2

\mathbf{MOF}_2	$Pm\overline{3}m$	P4mm	Pbnm	P63/mmc	$R\overline{3}c$	P2/b
TiOF ₂	0.128	0.303	0.000	0.323	0.001	0.000135
VOF_2	0.095	0.110	0.000	0.315	0.007	0.004
$CrOF_2$	0.175	0.195	0.019	0.376	0.000	0.009
MnOF ₂	0.078	0.501	0.034	0.226	0.000	0.026
$FeOF_2$	0.387	0.326	0.000	0.649	0.325	0.285
$CoOF_2$	0.264	0.369	0.226	0.552	0.240	0.000
NiOF ₂	0.156	0.429	0.038	0.222	0.000	0.037

Figure S2: Initial structures of the desodiated ground states and their corresponding sodiated structures, (a) TiOF₂ (left) and NaTiOF₂ (right), (b) NaTiO₂F (left) and Na₂TiO₂F (right), (c) VOF₂ and NaVOF₂, (d) NaVO₂F and Na₂VO₂F, (e) CrOF₂ and NaCrOF₂, (f) NaCrO₂F and Na₂CrO₂F, (g) MnOF₂ and NaMnOF₂, (h) NaMnO₂F and Na₂MnO₂F, (i) FeOF₂ and NaFeOF₂, (i) NaFeO₂F and Na₂FeO₂F, (k) CoOF₂ and NaCoOF₂, (l) NaCoO₂F and Na₂CoO₂F, (m) NiOF₂ and NaNiOF₂, and (n) NaNiO₂F and Na₂NiO₂F. Yellow, red, and blue spheres are Na, O, and F, respectively. Polyhedra in each panels represent the corresponding transition metal.

Literature stability data

Table S5: Comparison of thermodynamic stability data in calculated Na-M-O-F phase diagrams in this work with the Materials Project database⁶ and thermochemical handbooks.^{7,8} ICSD structures that do not have an equivalent entry within the Materials Project are indicated as Not available under the 'Collection ID' column under Materials Project.

ICSD COLLECT- ION ID	COMPOSITIONS ON PHASE DIAGRAM		COMPOSITIONS ON MATERIALS PROJECT		BOOKS ON THERMO- CHEMICAL DATA
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y
	UNSTABLE: RED	(meV/ atom)		$({ m meV}/{ m atom})$	DATA UNAVAILABLE: N
		Na, O,	F elements		
44757	Na	0	mp-127	20	Y
18311	O_2	0	mp-611836	0	Y
16262	F_2	0	mp-561203	0	Y
		Na-C) systems		
26583	NaO_2	0	mp-1901	0	Y
85587	NaO_3	16	mp-22464	84	Ν
60435	Na_2O	0	mp-2352	0	Y
26575	Na_2O_2	0	mp-2340	0	Y
		Na-F	' systems		
29128	NaF	0	mp-682	0	Y
		Ti	element		<u> </u>
43416	Ti	0	mp-72	0	Y
		Ti-O	systems		
174033	$\mathrm{TiO}_{1.25}$	49	mp-10734	56	Ν
15327	TiO	24	mp-1203	53	Y
9191	${ m TiO}_2$	0	mp-2657	10	Y
23574	Ti_2O	0	mp-1215	0	Ν
6095	${ m Ti}_2{ m O}_3$	0	mp-458	0	Y
20041	${ m Ti}_3{ m O}$	0	mp-2591	0	Ν
75194	${ m Ti}_3{ m O}_5$	31	mp-1147	8	Y
77697	${ m Ti}_4{ m O}_5$	77	mp-10734	56	Ν
6098	$\mathrm{Ti}_4\mathrm{O}_7$	0	mp-12205	0	Ν
9038	${ m Ti}_5{ m O}_9$	10	mp-748	0	Ν
17009	$\mathrm{Ti}_{6}\mathrm{O}$	0	mp-554098	0	Ν
35121	${ m Ti}_6{ m O}_{11}$	4	mp-30524	0	Ν

ICSD COLLECT- ION ID	COMPOSITIONS PHASE DIAGRA	ON M	COMPOSITIONS ON MATERIALS PROJECT		BOOKS ON THERMO- CHEMICAL DATA
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y
	UNSTABLE: RED	(meV/ atom)		(meV/ atom)	DATA UNAVAILABLE: N
		Ti-O	systems		
35122	${ m Ti}_7{ m O}_{13}$	4	mp-556724	1	Ν
35123	${ m Ti}_8{ m O}_{15}$	6	mp-565700	2	Ν
35124	${ m Ti}_9{ m O}_{17}$	5	mp-27273	2	Ν
		Ti-F	systems		
65410	TiF_2	0	mp-282	248	Ν
16649	${ m TiF}_3$	0	mp-562468	2	Ν
78737	${ m TiF}_4$	0	mp-28974	0	Y
		Na-Ti-	·O systems		
202906	$NaTi_2O_4$	0	mp-29356	0	Ν
69110	$NaTi_8O_{13}$	40	mp-28649	5	Ν
187821	$Na_2Ti_3O_7$	30	mp-3488	0	Y
23877	$Na_2Ti_6O_{13}$	27	mp-5446	0	Ν
238299	$Na_3Ti_6O_{13}$	49	mp-1190392	20	Ν
170677	$Na_4Ti_5O_{12}$	0	Not available		Ν
251700	$Na_8Ti_5O_{14}$	0	mp-28017	0	Ν
		Na-Ti-	-F systems		
389	NaTiF_4	0	mp-27264	0	Ν
40916	Na_2TiF_6	0	mp-556024	0	Ν
		Ti-O-	F systems		
160661	TiOF_2	0	Not available		Y
		Na-Ti-O	D-F systems		
	No Na-	Ti-O-F c	composition available		
		Ve	element		
43420	V	0	mp-146	0	Y
	_	V-O	systems		
28681	VO	0	mp-19184	22	Y
15889	VO_2	4	mp-1102963	43	Y
6286	V_2O_3	0	mp-715514	11	Y
24042	V_2O_5	0	mp-25279	0	Y
16445	V_3O_5	0	mp-622497	12	Y

ICSD COLLECT- ION ID	COMPOSITIONS ON PHASE DIAGRAM		COMPOSITIONS ON MATERIALS PROJECT		BOOKS ON THERMO- CHEMICAL DATA
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y
	UNSTABLE: RED	(meV/ atom)		(meV/ atom)	DATA UNAVAILABLE: N
		V-O	systems		
2338	V_3O_7	0	mp-622640	20	Ν
2775	V_4O_7	4	mp-555597	37	Y
15041	$ m V_4O_9$	17	mp-27412	45	Ν
6097	V_5O_9	0	mp-542334	30	Ν
196	V_6O_{11}	3	mp-30518	39	Ν
15028	V_6O_{13}	0	mp-18896	45	Y
77706	V_7O_3	77	mp-542910	831	Ν
197	V_7O_{13}	0	mp-27151	45	Ν
166600	V_8O	46	mp-714972	1378	Ν
424885	V_8O_{15}	3	mp-556566	42	Ν
424886	V_9O_{17}	2	mp-559485	57	Ν
77708	$V_{13}O_{16}$	204	mp-30065	677	Ν
77707	$V_{16}O_3$	31	mp-30064	1396	Ν
		V-F	systems		
32552	VF_2	0	mp-555934	0	Ν
30624	VF_3	0	mp-559931	0	Y
65785	VF_4	0	Not available		Y
9887	VF_5	0	mp-27309	0	Y
		Na-V-	O systems		
420136	$NaVO_2$	0	mp-19391	0	Ν
29450	NaVO_3	53	mp-555665	6	Y
159905	NaV_2O_4	57	mp-642750	21	Ν
92955	NaV_2O_5	0	Not available		Ν
71869	$\rm NaV_6O_{11}$	105	mp-555198	396	Ν
32262	$\rm NaV_3O_8$	110	Not available		Ν
239394	$\mathrm{Na}_{0.33}\mathrm{V_2O_5}$	83	Not available		Ν
20556	$\operatorname{Na}_2(\operatorname{VO}_3)_2$	54	mp-19083	0	Ν
163234	$\mathrm{Na_2V_3O_7}$	138	mp-557315	0	Ν
35635	$\mathrm{Na_4V_2O_7}$	0	mp-648893	5	Y
280067	$Na_{4.5}V_7O_{17.5}$	171	Not available		Ν

ICSD COLLECT- ION ID	COMPOSITIONS PHASE DIAGRA	ON M	COMPOSITIONS MATERIALS PROJ	ON ECT	BOOKS ON THERMO- CHEMICAL DATA			
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y			
	UNSTABLE: RED	(meV/ atom)		$({ m meV}/{ m atom})$	DATA UNAVAILABLE: N			
		Na-V-	O systems					
416170	Na_5VO_4O	0	mp-18233	2	Ν			
55686	$\mathrm{Na}_{1.286}\mathrm{V}_{2}\mathrm{O}_{5}$	167	Not available		Ν			
194368	$Na_{0.5}VO_2$	97	mp-783905	17	Ν			
		Na-V-	F systems					
60611	$NaVF_3$	0	mp-20572	91	Ν			
407013	NaVF_4	0	mp-17999	0	Y			
27347	Na_3VF_6	0	mp-556633	37	Υ			
		V-O-I	F systems					
142594	VOF_2	0	Not available		Ν			
249507	VOF_3	0	mp-556026	0	Ν			
Na-V-O-F systems								
	No Na-	V-O-F c	omposition available					
		Cr	element					
44731	Cr	0	mp-90	0	Y			
		Cr-O	systems	1				
109296	CrO	337	mp-19091	368	Y			
9423	CrO_2	0	mp-19177	0	Y			
16031	$ m CrO_3$	46	mp-510421	47	Y			
25781	Cr_2O_3	0	mp-19399	0	Y			
15904	Cr_3O	1612	mp-20609	1808	Ν			
24299	Cr_5O_{12}	0	mp-13869	25	Ν			
71297	Cr_8O_{21}	18	mp-558855	33	Ν			
		Cr-F	systems					
31827	CrF_2	82	mp-554340	0	Y			
25828	CrF_3	0	mp-560338	0	Y			
78778	CrF_4	0	mp-20488	6	Y			
419661	CrF_5	0	mp-639662	0	Ν			
14135	$\mathrm{Cr}_{2}\mathrm{F}_{5}$	41	mp-558380	3	Ν			
		Na-Cr-	·O systems					
182235	$NaCrO_2$	0	mp-578604	0	Y			

ICSD COLLECT- ION ID	COMPOSITIONS ON PHASE DIAGRAM		COMPOSITIONS MATERIALS PROJ	ON IECT	BOOKS ON THERMO- CHEMICAL DATA
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y
	UNSTABLE: RED	(meV/ atom)		(meV/ atom)	DATA UNAVAILABLE: N
		Na-Cr-	-O systems		
82620	$NaCr(CrO_4)_2$	0	mp-19280	0	Ν
235826	$NaCr_2O_4$	1	Not available		Ν
159511	Na_2CrO_4	0	mp-18779	0	Y
2771	$Na_2Cr_2O_7$	0	mp-704459	0	Y
62676	Na_4CrO_4	0	mp-18884	0	Ν
		Na-Cr	-F systems		
25428	$ m NaCrF_3$	75	Not available		Ν
37108	$NaCrF_4$	0	mp-17523	0	Ν
418670	$ m NaCrF_6$	0	mp-646192	0	Ν
67250	Na_2CrF_4	98	mp-558383	12	Ν
27070	Na_3CrF_6	8	mp-560929	0	Ν
150870	$\mathrm{Na_5Cr_3F_{14}}$	0	mp-561252	7	Ν
		Cr-O-	F systems		
59123	CrOF_3	144	mp-31703	193	Ν
249513	$\rm CrO_2F_2$	154	mp-606313	188	Ν
		Na-Cr-(D-F systems		
	No Na-	Cr-O-F o	composition available		
		Mn	element		
5248	Mn	0	mp-1055908	370	Y
		Mn-C) systems		
9864	MnO	0	mp-19006	53	Y
393	MnO_2	0	mp-510408	6	Y
24342	Mn_2O_3	0	mp-1172875	0	Y
60821	Mn_2O_7	719	mp-28338	336	Ν
8355	Mn_3O_4	0	mp-18759	0	Y
16956	Mn_5O_8	2	mp-18922	13	Ν
		Mn-H	systems		
14142	MnF_2	0	mp-560902	0	Y
19080	MnF_3	0	mp-556560	0	Ν
62068	MnF_4	0	mp-541103	0	Ν

ICSD COLLECT- ION ID	COMPOSITIONS ON PHASE DIAGRAM		COMPOSITIONS MATERIALS PROJ	ON IECT	BOOKS ON THERMO- CHEMICAL DATA
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y
	UNSTABLE: RED	(meV/ atom)		(meV/ atom)	DATA UNAVAILABLE: N
		Mn-H	systems		
113572	Mn_2F_5	0	mp-753169	74	Ν
113573	$\mathrm{Mn}_3\mathrm{F}_8$	12	Not available		Ν
		Na-Mn	-O systems		
151587	$NaMn_3Mn_4O_{12}$	13	mp-18999	29	Ν
431105	${ m NaMnO_4}$	322	mp-765753	69	Y
16270	$NaMnO_2$	0	mp-18957	0	Ν
172604	$NaMn_2O_4$	0	mp-542710	0	Ν
19022	$NaMn_7O_{12}$	16	mp-18999	0	Ν
1563	$Na_{14}(MnO_4)_2O$	0	mp-27569	0	Ν
419587	Na_2MnO_2	0	mp-559081	6	Ν
39504	Na_2MnO_4	107	mp-28186	84	Y
409981	$\rm Na_2Mn_2O_3$	9	mp-558376	0	Ν
92858	$Na_2Mn_3O_7$	0	mp-61050	0	Ν
1026	$Na_4Mn_2O_5$	0	mp-1026	0	Ν
47101	${ m Na_5MnO_4}$	19	mp-28262	10	Ν
420410	${ m Na_6MnO_4}$	16	mp-19321	18	Ν
		Na-Mn	-F systems		-
15621	$NaMnF_3$	0	mp-560242	0	Ν
15621	$NaMnF_4$	0	mp-554517	0	Ν
62080	$\rm NaMn_3F_{10}$	8	mp-541104	0	Ν
62080	Na_2MnF_5	0	mp-555618	0	Ν
66315	Na_3MnF_6	0	mp-561200	159	Ν
62788	$Na_5Mn_3F_{14}$	9	mp-28398	14	Ν
		Mn-O-	-F systems		
	No Ma	n-O-F co	mposition available		
	I	Na-Mn-	O-F systems		
	No Na-l	Mn-O-F	composition available		
		Fe	element		
14754	Fe	0	mp-13	0	Y
		Fe-O	systems	1	1

ICSD COLLECT- ION ID	COMPOSITIONS ON PHASE DIAGRAM		COMPOSITIONS ON MATERIALS PROJECT		BOOKS ON THERMO- CHEMICAL DATA	
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y	
	UNSTABLE: RED	$({ m meV}/{ m atom})$		(meV/ atom)	DATA UNAVAILABLE: N	
		Fe-O	systems		<u>.</u>	
31081	FeO	0	mp-18905 410		Y	
7797	$\mathrm{Fe}_2\mathrm{O}_3$	0	mp-19770	0	Y	
5247	$\mathrm{Fe}_3\mathrm{O}_4$	0	mp-19306	0	Y	
434152	$\mathrm{Fe_4O_5}$	87	Not available		Ν	
430563	$\rm Fe_5O_7$	143	mp-1095382	171	Ν	
430601	$\rm Fe_7O_9$	100	Not available		Ν	
135154	$\rm Fe_7O_{10}$	152	Not available		Ν	
238770	$\mathrm{Fe}_{13}\mathrm{O}_{19}$	277	mp-1195927	303	Ν	
430562	$\mathrm{Fe}_{25}\mathrm{O}_{32}$	188	Not available		Ν	
		Fe-F	systems		·	
9166	${\rm FeF}_2$	0	mp-556911	0	Y	
41120	${ m FeF}_3$	0	mp-22398	0	Y	
		Na-Fe-	O systems			
37157	$NaFeO_2$	0	mp-19359	0	Y	
200009	${ m NaFe_2O_3}$	65	mp-18728	101	Ν	
1118	$Na_{14}Fe_6O_{16}$	24	mp-18917	22	Ν	
50478	Na_2FeO_4	170	mp-19044	71	Ν	
413270	${ m Na_3FeO_3}$	6	mp-30947	0	Ν	
14353	$\mathrm{Na_3Fe_5O_9}$	88	mp-540658	8	Ν	
1410	$Na_4 FeO_3$	0	mp-19026	15	Ν	
59585	$Na_4 FeO_4$	0	mp-19022	0	Ν	
73881	$Na_4Fe_{12}O_{20}$	54	mp-505170	71	Ν	
1025	$Na_4Fe_2O_5$	48	mp-19396	38	Ν	
2485	$\mathrm{Na}_{5}\mathrm{FeO}_{4}$	1	mp-13745	5	Ν	
1557	$Na_8Fe_2O_7$	0	mp-27557	0	Ν	
412212	$Na_9FeO_3FeO_4$	3	mp-16398	22	Ν	
		Na-Fe-	F systems			
32384	$NaFeF_3$	0	mp-505066	0	Y	
15501	$NaFeF_4$	0	mp-18455	0	Ν	
67957	$\mathrm{Na_2Fe_2F_7}$	7	mp-1203434	16	Ν	

ICSD COLLECT- ION ID	COMPOSITIONS PHASE DIAGRA	ON .M	COMPOSITIONS ON MATERIALS PROJECT		BOOKS ON THERMO- CHEMICAL DATA		
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y		
	UNSTABLE: RED	(meV/ atom)		(meV/ atom)	DATA UNAVAILABLE: N		
		Na-Fe-	-F systems				
20157	Na_3FeF_6	0	mp-560311	0	Ν		
150871	$Na_5Fe_3F_{14}$	10	mp-560925	2	Ν		
		Fe-O-	F systems				
	No Fe	e-O-F con	mposition available				
		Na-Fe-O	D-F systems				
	No Na-	Fe-O-F c	composition available				
		Со	element				
36675	Со	0	mp-54	30	Y		
		Co-C) systems				
9865	CoO	25	mp-19079	37	Y		
88722	$ m CoO_2$	377	mp-32686	107	Ν		
24210	$\mathrm{Co}_3\mathrm{O}_4$	0	mp-18748	10	Y		
		Co-F	systems				
9167	CoF_2	0	mp-555908	0	Y		
16672	CoF_3	0	mp-559473	52	Y		
		Na-Co	-O systems				
6152	$NaCoO_2$	0	mp-18921	0	Ν		
155491	$Na_{0.5}CoO_2$	0	mp-22474	0	Ν		
162855	$Na_{0.571}CoO_2$	49	Not available		Ν		
167343	$Na_{0.667}CoO_2$	59	mp-1203207	55	Ν		
413025	$Na_{10}Co_4O_{10}$	20	mp-561875	6	Ν		
10064	$Na_{10}Co_4O_9$	0	mp-562435	0	Ν		
73211	Na_3CoO_2	3	mp-28824	30	Ν		
10473	Na_4CoO_3	0	mp-18762	0	Ν		
4196	Na_4CoO_4	0	mp-760068	0	Ν		
14180	Na_5CoO_4	6	mp-21792	0	Ν		
99580	$Na_6Co_2O_6$	9	mp-31126	0	Ν		
414127	$Na_7(CoO_3)_2$	11	mp-19427	12	Ν		
99917	$Na_9Co_2O_7$	12	mp-510308	14	N		
Na-Co-F systems							

ICSD COLLECT- ION ID	COMPOSITIONS ON PHASE DIAGRAM		COMPOSITIONS ON MATERIALS PROJECT		BOOKS ON THERMO- CHEMICAL DATA				
	STABLE: BLACK	\mathbf{E}^{hull}	COLLECTION ID	\mathbf{E}^{hull}	DATA AVAILABLE: Y				
	UNSTABLE: RED	(meV/ atom)		(meV/ atom)	DATA UNAVAILABLE: N				
Na-Co-F systems									
4404	$NaCoF_3$	0	mp-521404	0	Ν				
	Co-O-F systems								
	No Co	o-O-F co	mposition available						
		Na-Co-(D-F systems						
	No Na-	Co-O-F o	composition available						
		Ni	element						
8688	Ni	0	mp-23	0	Y				
	Ni-O systems								
9866	NiO	0	mp-19009	mp-19009 0					
78698	NiO_2	150	mp-25210	131	Ν				
		Ni-F	systems						
9168	NiF_2	0	mp-559798	0	Y				
87944	NiF_3	0	mp-614777	0	Ν				
		Na-Ni-	O systems						
85317	$NaNiO_2$	351	mp-21792	0	Ν				
14159	Na_2NiO_2	0	mp-18765	43	Ν				
1583	Na_5NiO_4	421	mp-21996	0	Ν				
	Na-Ni-F systems								
25533	$NaNiF_3$	0	mp-561480	0	Ν				
26073	Na_3NiF_6	0	mp-554649 0		Ν				
138821	$NiNa_2F_6$	0	Not available		Ν				
Ni-O-F systems									
No Ni-O-F composition available									
Na-Ni-O-F systems									
No Na-Ni-O-F composition available									

Extent of Jahn-Teller distortion

Table S6: Percentage deviation in lattice parameters (b/a and c/a) upon DFT energy calculation as a result of Jahn Teller distortion observed in sodiated F and O-rich Ni and Mn oxyfluorides, respectively.

	$NaMnOF_2$		$\mathbf{Na}_{2}\mathbf{MnO}_{2}\mathbf{F}$				
b/a INITIAL	b/a RELAXED	% DEVIATION	b/a INITIAL	b/a RELAXED	% DEVIATION		
1	1	0.20	1.01	1.33	31.52		
c/a INITIAL	c/a RELAXED	% DEVIATION	c/a INITIAL	c/a RELAXED	% DEVIATION		
1.03	0.97	-5.36	1.40	1.24	-11.02		

	$NaNiOF_2$		$\mathbf{Na}_{2}\mathbf{NiO}_{2}\mathbf{F}$			
b/a INITIAL	b/a RELAXED	% DEVIATION	b/a INITIAL	b/a RELAXED	% DEVIATION	
1	0.99	-1.33	1	1.08	7.53	
c/a INITIAL	c/a RELAXED	% DEVIATION	c/a INITIAL	c/a RELAXED	% DEVIATION	
1.03	0.98	-4.13	1.03	1.25	21.46	

Tolerance Factors

Table S7: Calculated Goldschmidt $(t)^9$ and Bartel et al. $(\tau)^{10}$ tolerance factors for AMOF₂, AMO₂F, and A₂MO₂F (A = Na or Li). Values outside the tolerance factor thresholds for forming a perovskite structure, namely 0.825 < t < 1.059 and $\tau < 4.18$, are highlighted with red text.

	\mathbf{AMOF}_2		$\mathbf{AMO}_{2}\mathbf{F}$				A_2MO_2F					
M	A=	Na	A=	= Li	A=	Na	A=	= Li	A=	Na	A=	= Li
	t	τ	t	au	t	τ	t	τ	t	τ	t	τ
Ti	0.959	3.863	0.794	5.350	0.956	3.898	0.793	5.385	0.956	3.898	0.793	5.385
V	0.973	3.915	0.806	5.076	0.970	3.951	0.805	5.112	0.970	3.951	0.805	5.112
Cr	0.986	3.972	0.817	4.915	1.015	4.229	0.843	4.754	0.982	4.010	0.815	4.953
Mn	0.971	3.905	0.804	5.115	1.026	4.318	0.852	4.745	0.968	3.941	0.803	5.151
Fe	0.971	3.905	0.804	5.115	0.997	4.099	0.828	4.827	0.968	3.941	0.803	5.151
Со	0.988	3.985	0.819	4.889	1.026	4.318	0.852	4.745	0.985	4.024	0.817	4.927
Ni	0.993	4.013	0.823	4.843	1.054	4.592	0.875	4.814	0.990	4.052	0.822	4.882
Mo	0.949	3.838	0.787	5.596	0.965	3.931	0.801	5.192	0.947	3.872	0.786	5.630
Nb	0.936	3.814	0.775	6.092	0.951	3.884	0.790	5.500	0.933	3.847	0.775	6.125

Decomposition products

TRANSITION	OXYFLUORIDE	PREDICTED				
METAL	COMPOSITION	DECOMPOSITION PRODUCTS				
	NaTiOF ₂	Ti_2O_3 , NaTiF ₄ , NaF				
Ti	NaTiO ₂ F	TiO ₂ , NaF				
	ON OXYFLUORIDI COMPOSITION COMPOSITION NaTiO ₂ F NaTiO ₂ F Na ₂ TiO ₂ F NaVOF ₂ NaVO ₂ F NaVO ₂ F NaVO ₂ F NaVO ₂ F NaCrO ₂ F NaCrO ₂ F NaCrO ₂ F NaCrO ₂ F NaACrO ₂ F NaMnOF ₂ NaMnO ₂ F NaAMnO ₂ F NaAMnO ₂ F NaAFeO ₂ F NaFeO ₂ F NaFeO ₂ F NaFeO ₂ F NaAFeO ₂ F NaAFeO ₂ F NaAFeO ₂ F NaACoOF ₂ NaCoO ₂ F NaNiOF ₂	Ti_2O_3 , $Na_8Ti_5O_{14}$, NaF , Na				
	NaVOF ₂	V_2O_3 , Na ₃ VF ₆				
V	NaVO ₂ F	$\mathrm{V_2O_3,Na_3VF_6,NaV_2O_5,NaF}$				
	Na ₂ VO ₂ F	NaVO ₂ , NaF				
	$CrOF_2$	Cr_5O_{12}, CrF_3, O_2				
Cr	$NaCrOF_2$	Na_3CrF_6, Cr_2O_3				
	$Cr = \frac{NaCrOF_2}{NaCrO_2F}$ $MnOF_2$ $NaMnOF_2$ $NaMnOF_2$	CrO_2 , NaF				
	Na ₂ CrO ₂ F	$NaCrO_2, NaF$				
	$MnOF_2$	MnO_2, MnF_3, O_2				
Mrs	NaMnOF ₂	Mn_2O_3, Na_3MnF_6				
INTI I	V V $NaVOF_2$ $NaVO_2F$ Na_2VO_2F $CrOF_2$ $NaCrOF_2$ $NaCrO_2F$ Na_2CrO_2F Na_2CrO_2F $NaMnOF_2$ $MnOF_2$ $NaMnOF_2$ $NaMnO_2F$ $NaMnO_2F$ Na_2MnO_2F Na_2MnO_2F $NaFeOF_2$ $NaFeOF_2$ $NaFeO_2F$ $NaFeO_2F$ $NaFeO_2F$ $NaCoOF_2$ $NaCoOF_2$ $NaCoO_2F$	MnO ₂ , NaF				
	Na ₂ MnO ₂ F	NaMnO ₂ , NaF				
	${\rm FeOF}_2$	Fe_2O_3, FeF_3, O_2				
Fo	$NaFeOF_2$	Na_3FeF_6, Fe_2O_3				
re	NaFeO ₂ F	Fe_2O_3, O_2, NaF				
	Na ₂ FeO ₂ F	NaFeO ₂ , NaF				
	$CoOF_2$	CoF_2, O_2				
Co	NaCoOF ₂	Na _{0.5} CoO ₂ , NaCoF ₃ , O ₂ , NaF				
0	NaCoO ₂ F	Na _{0.5} CoO ₂ , NaCoF ₃ , O ₂ , NaF				
	Na ₂ CoO ₂ F	NaCoO ₂ , NaF				
	NiOF ₂	NiF_2, O_2				
NT:	$NaNiOF_2$	NaNiF ₃ , Na ₂ NiO ₂ , NiF ₂ , O ₂				
1N1	NaNiO ₂ F	Na_2NiO_2, NiF_2, O_2				
	Na ₂ NiO ₂ F	NaNiF ₃ , Na ₂ NiO ₂ , O ₂ , NaF				

 $\label{eq:stable} {\bf Table \ S8}: \ {\rm Predicted \ decomposition \ products \ of \ metastable/unstable \ O-rich \ and \ F-rich \ perovskites \ considered \ in \ this \ work.}$

Intercalation vs. conversion voltages

Figure S3: Comparison of intercalation (light colored bars) and conversion (dark colored bars) voltages for (a) $MOF_2 \leftrightarrow NaMOF_2$, and (b) $NaMO_2F \leftrightarrow Na_2MO_2F$ systems. Typically, larger conversion voltages compared to intercalation voltages indicate larger thermodynamic driving force for cathode materials to decompose into thermodynamically stable product(s) (see Table S8). rather than undergoing intercalation.

0 K phase diagrams

Figure S4: Ternary projections of quaternary phase diagrams of (a) Na-V-O-F, (b) Na-Cr-O-F, (c) Na-Mn-O-F, (d) Na-Fe-O-F, (e) Na-Co-O-F, and, (f) Na-Ni-O-F. Annotations used in this figure are identical to **Figure 5** of the main text.

Minimum energy pathways (MEPs)

Figure S5: Calculated Na⁺ MEPs for the candidate perovskite oxyfluorides, namely, (a) TiOF_2 , (b) NaTiOF₂, (c) VOF₂, (d) NaVOF₂, (e) CrOF₂, and (d) NaMnOF₂. The E_m values are listed as text annotations in each panel. In panel (a), the MEP for the homogeneously strained TiOF₂ structure is shown with grey squares and the E_m in grey text.

Figure S6: Na⁺ mobility pathway shown for a candidate perovskite oxyfluoride, namely, (a) pristine TiOF₂, and (b) 5% homogeneously strained TiOF₂. The yellow, orange, pink and purple balls along the mobility pathway represent the images of migrating Na⁺ from one site (yellow) to another vacant (yellow) site. The average Na-O/F bond-distances at the transition state image were initialized at (relaxed to) 1.90 Å (1.91 Å) and 2.05 Å (2.41 Å) in pristine and strained TiOF₂, respectively.

References

- Reddy, M.; Madhavi, S.; Rao, G. S.; Chowdari, B. Metal oxyfluorides TiOF₂ and NbO₂F as anodes for Li-ion batteries. *Journal of power sources* **2006**, *162*, 1312–1321.
- (2) Kuhn, A.; Plews, M. R.; Pérez-Flores, J. C.; Fauth, F.; Hoelzel, M.; Cabana, J.; García-Alvarado, F. Redox Chemistry and Reversible Structural Changes in Rhombohedral VO₂F Cathode during Li Intercalation. *Inorganic chemistry* **2020**, *59*, 10048–10058.
- (3) Long, O. Y.; Gautam, G. S.; Carter, E. A. Evaluating optimal U for 3 d transition-metal oxides within the SCAN+ U framework. *Physical Review Materials* **2020**, *4*, 045401.
- (4) Tekliye, D. B.; Gautam, G. S. Accuracy of metaGGA functionals in describing transition metal fluorides. arXiv preprint arXiv:2401.10832 2024,
- (5) Hellenbrandt, M. The inorganic crystal structure database (ICSD)—present and future. Crystallography Reviews 2004, 10, 17–22.

- (6) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; others Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. *APL materials* 2013, 1.
- (7) Kubaschewski, O.; Alcock, C. B.; Spencer, P. Materials thermochemistry. (No Title) 1993,
- (8) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)]. Journal of Physical and Chemical Reference Data 1989, 18, 1807–1812.
- (9) Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485.
- (10) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. *Science advances* **2019**, *5*, eaav0693.