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discovery of disordered multi-
component solid-state electrolytes using machine
learning interatomic potentials

Yanhao Deng, a Yan Li,a Gopalakrishnan Sai Gautam, b Bonan Zhu *cd

and Zeyu Deng *a

Machine learning interatomic potentials (MLIPs) are rapidly emerging as powerful tools for materials simulations,

offering a promising pathway to explore complex systems beyond the reach of traditional methods. This study

investigates the application of MLIPs focused on the MACE architecture, to multi-component, disordered solid-

state electrolytes (SSEs), a critical class of materials for the next-generation solid-state batteries. We first

benchmark the performance of MACE against established SSE families, Na1+xZr2SixP3−xO12 and

Li3+xP1−xGexS4−4xO4x, confirming their general applicability while identifying key considerations for robust

potential development in chemically diverse systems. This workflow, emphasizing the selection of representative

configurations, provides critical insights for constructing reliable models in complex, multi-components

environments. We further demonstrate the predictive power of this approach by constructing a high-

performance MLIP for the novel halide system Li3InxY1−xBr6yCl6−6y (x, y ˛ [0, 1] and x + y $ 1), leading to the

identification of the Li3In0.5Y0.5Br3Cl3 stoichiometry with the most favorable predicted ion transport properties.

By analyzing the molecular dynamics (MD) trajectories generated in this work using our MLIP, we identified two

distinct Li-ion migration pathways in this material. The trained model facilitates the computational investigation

of intricate mixed cation/anion substitutions in halide SSEs, offering new insights into higher-entropy systems

incorporating multi-components. Our results underscore the capability of MLIPs to accelerate the discovery

cycle of complex functionalmaterials and provide a robust computational framework for designing advanced SSEs.
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Introduction

Combining quantum precision with classical efficiency,
machine learning interatomic potentials (MLIPs) are emerging
as transformative tools in computational materials science1,2

that enable simulations several orders of magnitude faster than
ab initio methods.3,4 This dual advantage of enhanced speed
and reliable accuracy enables the computational investigation
of complex material systems and large-length, long-time scale
molecular dynamics (MD) simulations, signicantly broad-
ening the horizons of computational materials research.5,6

MLIPs have been developed based on approaches such as the
Gaussian approximation potential (GAP),7 moment tensor
potentials (MTP),8 and neural network models.9,10 Graph Neural
Networks (GNNs)11 have become a widely used framework for
modeling atomic systems and developing interatomic poten-
tials. Notable examples include CGCNN,12 M3GNet,13 and
CHGNet.14 By encoding structural symmetry information,
invariant and particularly equivariant GNNs—such as NequIP15
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Fig. 1 Workflow for fine-tuning the MLIPs developed in this work. The
upper panel (in a dashed box) illustrates the procedure for constructing
the training dataset.
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and MACE16—have achieved enhanced efficiency without
compromising accuracy.17,18 The MACE architecture,16 which
extends the atomic cluster expansion (ACE) framework19 and
employs high body-order equivariant features in each layer,
enabling accurate modeling with just two layers of message
passing, thus achieving low computational cost, on the order of
nanoseconds per day on a GPU.

Meanwhile, training universal MLIPs (uMLIPs) using large,
diverse datasets such as the Materials Project (MP),20 AFLOW,21

Open Quantum Materials Database (OQMD),22 Alexandria,23

Open Materials 2024 (OMAT24),24 and MatPES25 has generated
signicant interest, enabling direct deployment across mate-
rials encompassing >90% of application-relevant elements in
the periodic table, including inorganic crystals, organic
compounds, and theoretically predicted structures.5,13 As their
reliability and generalizability improve, uMLIPs are rapidly
becoming mainstream tools for materials modeling.26–28 Recent
state-of-the-art uMLIPs, such as MACE-MP,29 eSEN,30 Sev-
enNet,17 and BAMBOO,31 training on those diverse and
combined datasets, enable transferability across a wide range of
materials systems.

In this work, we systematically evaluate the performance of
the MACE architecture by ne-tuning the MACE-MP (version:
MACE-MP-0a).29 We apply this model to representative SSEs,
which are crucial for advancing safer lithium- and sodium-
based batteries by replacing conventional ammable liquid
electrolytes with solid fast-ion conductors.32–34 While there have
been increasing applications of MLIPs in modeling SSEs,4,35–41

achieving broad compositional coverage, low computational
cost, high prediction accuracy, and delity remains chal-
lenging.42 To address this, ne-tuning a uMLIP offers a prom-
ising strategy, as it enables adaptation to new material systems
with minimal additional data while leveraging knowledge from
diverse chemistries. We implement this scheme by ne-tuning
the MACE-MP model using a multi-head strategy, which
requires only a small dataset to achieve stable results and helps
prevent catastrophic forgetting that can occur during naive ne-
tuning. Furthermore, an efficient training data selection algo-
rithm is introduced to further enhance the effectiveness of this
ne-tuning process.

As a benchmark system, we rst evaluate the model on
Na1+xZr2SixP3−xO12 (NaSICON), a class of SSEs rst reported
more than 40 years ago.43 Its extensive experimental and
computational history makes it an ideal candidate to validate
the MLIP performance and reconcile predictions with previous
studies.43–49 Our investigation also includes materials from the
oxysulde SSE family. Specically, we focus on the pseudo-
binary system (1 − x)Li3PS4–xLi4GeO4 (LPSGO).50 This system
aims to combine the high Li-ion conductivity of suldes like
Li3PS4 (LPS) with the electrochemical stability of oxides like
Li4GeO4 (LGO), offering an excellent platform to assess the
ability of MLIPs to capture complex hybrid SE chemistries.

Beyond these benchmarks, our investigation extends to
lithium ternary halide systems (Li3MX6), with a focus on the
mixed halide system represented by the ternary compound
phase diagram Li3YBr6–Li3InBr6–Li3InCl6. Each compound
serves as a vertex of a compositional triangle. This ternary
J. Mater. Chem. A
system is described by the general chemical formula
Li3InxY1−xBr6yCl6−6y, where x, y ˛ [0, 1] and x + y $ 1. Among
these, Li3InBr6 exhibits high room-temperature conductivity
(0.1–1 mS cm−1),51–53 while Li3YBr6 achieves similar perfor-
mance (0.03–1.7 mS cm−1).54 Recently, Li3InCl6 has demon-
strated excellent ionic conductivity (0.79–4.03 mS cm−1) and
excellent chemical and electrochemical stability, beneting
from reduced grain boundary effects.55–59 Although simple
mixed-halide SSEs (e.g., Li3InBrxCl6−x) are well-studied, inves-
tigating complex cases involving simultaneous double
elemental substitutions (where x s 0 and y s 0 in
Li3InxY1−xBr6yCl6−6y) remains challenging. Herein, leveraging
MACE architecture, we demonstrate that a single, ne-tuned
model can accurately capture the entire energy landscape
across this quaternary compositional space, including experi-
mentally unexplored regions, thereby facilitating the discovery
of new high-performance compositions.

Results

It is widely recognized that the distribution of the training
dataset signicantly inuences the performance of MLIP
models.60 To construct a comprehensive training dataset for
a disordered, multi-component system, we developed a robust
workow, as illustrated in the upper panel of Fig. 1. First, we
enumerate possible structures for each distinct composition
within the investigated chemical system. Their energies were
estimated using the uMLIP (MACE-MP), enabling the
construction of a thermodynamic convex hull across the entire
compositional space. Structures were then selected probabilis-
tically based on their energy above the convex hull (Ehull) per
formula unit, with a probability proportional to the Boltzmann
factor, pf exp(−Ehull/kBT), where kB is the Boltzmann constant.
In this study, the temperature T for the Boltzmann distribution
was set to 800 K. This probabilistic approach ensures a realistic
balance between highly stable, low-energy congurations and
This journal is © The Royal Society of Chemistry 2025
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thermodynamically accessible higher-energy structures,
reecting their thermal population. Additionally, the lowest-
energy structure for each composition was always included to
guarantee complete baseline coverage in the dataset.

Subsequently, for each selected conguration, we performed
MD simulations to sample the potential energy surface under
non-equilibrium conditions using the sameMACE-MPmodel in
a canonicalNVT ensemble at 800 K for 15 ps with a 1 fs timestep.
The rst 5 ps were allocated for equilibration and the remaining
10 ps were used for the production phase. This step aims to
comprehensively explore the conguration space of each
system. For each MD simulation, 30 structures were randomly
selected, resulting in a total of around 2500 structures. A
random strain, within ±3%, is also applied for each congu-
ration to enrich the stress values sampled. Finally, single-point
DFT calculations were performed on these diverse congura-
tions to construct an accurate training dataset. The strongly
constrained and appropriately normed semilocal density func-
tional (SCAN)61 is employed in these DFT calculations to achieve
high delity, compared to the Perdew–Burke–Ernzerhof (PBE)
Fig. 2 (a) Crystal structure of Na1+xZr2SixP3−xO12 where Na(1) and Na(2) si
SiO4 units are represented as green and purple polyhedra. (b) Quantitati
with different sizes of training dataset. (c) Formation energy (Ef) as a functi
hull is shown as black lines, with energies calculated using a model fine-
barrier and conductivity at 300 °C for Na3Zr2Si2PO12 predicted by mod
simulation usingMACE-MPwithout fine-tuning are included. Error bars fo
Methodology section for more details). When the training data size is app
for MD simulations. The lowest point is calculated from the ground stat

This journal is © The Royal Society of Chemistry 2025
functional62 used in the original MACE-MP model. This multi-
delity training strategy has been shown to be feasible and
effective for improving model accuracy.6,63 Further methodo-
logical details of DFT are provided in the Methodology section.
Benchmark on NaSICON and LPGSO

The rst system investigated is NaSICON (Na1+xZr2SixP3−xO12, x
˛ [0, 3], Dx = 0.25), focusing on its high-temperature phase in
R�3c (no. 167) space group.44 The crystal structure of NaSICON is
presented in Fig. 2(a). Na ions occupy two partially occupied
crystallographic sites – Na(1) and Na(2) – represented as yellow
and orange balls, respectively, which contribute to the high
ionic conductivity of NaSICON materials.44 ZrO6 units are
depicted as green polyhedra, while PO4/SiO4 polyanionic units
are represented as purple polyhedra.

We systematically ne-tune the MACE-MP model with
varying training data sizes. Fig. 2(b) illustrates the performance
of the model, quantied by the root mean square error (RMSE)
on energies, forces, and stresses on the validation set, as
a function of training dataset size. As the training dataset size
tes depicted as yellow and orange spheres, respectively. ZrO6 and PO4/
ve comparison of validation performance between models fine-tuned
on of composition x in Na1+xZr2SixP3−xO12. The thermodynamic convex
tuned with approximately 2500 DFT calculations. (d) Activation energy
els trained on datasets of different sizes. Experimental results43,44 and
r activation energy reflect standard deviations fromArrhenius plots (see
roximately 2500, structures with different PO4/SiO4 orderings are used
e structure.

J. Mater. Chem. A
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increases, the RMSEs of all three properties decrease consis-
tently. In particular, the continued reduction in the RMSEs of
force and stress for training dataset sizes above 1000 suggests
that additional data augmentation could further enhance the
model's accuracy. Given the sufficiently low errors for reliable
property predictions (0.5 meV per atom, 17.5 meV Å−1, and 0.4
meV Å−3 for energy, force, and stress, respectively), we adopt the
model ne-tuned with the full dataset of approximately 2500
structures for subsequent calculations. The original MACE-MP
model is excluded from this comparison because it is trained
with calculated data that uses PBE functional, while we gener-
ated the training data for ne-tuning employing SCAN, making
direct energy comparisons invalid.

The formation energy and phase stability of Na1+xZr2Six-
P3−xO12 are predicted, as shown in Fig. 2(c). Three stable
compositions at x = 0, 2, and 3 are identied, consistent with
the previous work.44 We then evaluate the performance of ne-
tunedmodels as a function of training dataset size and compare
it with the MACE-MP model. Specically, we examine the ionic
conductivity of the ground-state structure of Na3Zr2Si2PO12,
comparing our ndings with experimental results43,44 (Fig. 2(d)
and Table S1). The Arrhenius plots obtained by MACE-MP and
each ne-tunedmodel are shown in Fig. S1. The results indicate
that the activation energies predicted by the various ne-tuned
models, even with limited training data, align well with exper-
imental measurements to within a difference of 0.02 eV.
Furthermore, the calculated ionic conductivities at 300 °C also
show approximate order-of-magnitude consistency with exper-
imental observations.

Moreover, Fig. 2(d) suggests that increasing the training data
size of the ne-tuned model generally leads to more stable
predictions and smaller errors in the estimated activation
energy. While the original MACE-MP model predicts s300°C with
the highest accuracy among all models, its activation energy
deviates signicantly from the experimental values, about
0.15 eV lower. The conductivities predicted by the ne-tuned
models are stable across different training data sizes. The
difference between the predicted and experimental conductivity
values is small and acceptable, at 0.05–0.12 S cm−1. While there
are some differences—potentially due to variations in the
exchange–correlation functionals used to calculate the training
data—the results are still reasonable, especially considering
that the activation energy predictions demonstrate even greater
precision. We also analyzed the MD trajectory of Na ions in
Na3Zr2Si2PO12 at 800 K using GEMDAT soware.64 The shape of
the probability density (Fig. S2) is consistent with the litera-
ture.65 Besides, it has been reported that different PO4/SiO4

orderings can lead to variations in ionic conductivity (Fig. S3).44

To provide further validation, a series of Na3Zr2Si2PO12 cong-
urations were generated using a Monte Carlo (MC) sampling
approach37 on a 4 × 4 × 4 supercell. Subsequent MD simula-
tions were performed on these structures, using the potential
model trained on a dataset of 2500 points. The resulting ionic
conductivities, presented in Fig. 2(d) (in transparent orange star
points), demonstrate a clear increase from 0.08 S cm−1 to about
0.1 S cm−1 for the MC phases relative to the crystalline ground
state.
J. Mater. Chem. A
Overall, using the NaSICON system as a benchmark, we
demonstrate that ne-tuning with an appropriately sized data-
set enables predictions comparable to experimental results. Our
ndings suggest that datasets of approximately 2500 structures
provide a reliable balance between computational feasibility
and predictive precision for NaSICON material, while a careful
convergence test is always needed.

For the LPGSO system, we adopted structures for
Li3+xP1−xGexS4−4xO4x (x ˛ [0, 1]) from the work of Li et al., where
Pnma (no. 62) phase is used as the host model for both parent
materials b-Li3PS4 and Li4GeO4 (Fig. 3(a)).50 The same strategy
has been adopted for creating the training dataset from x ˛ [0,
1], Dx = 0.125, comprising approximately 2500 structures in
total. A convergence test was also performed to determine the
optimal training data size for the ne-tuned model (Fig. S4).

The formation energies of Li3+xP1−xGexS4−4xO4x composi-
tions as predicted by the trained MLIP, are presented in
Fig. 3(b). These results exhibit a convex hull prole closely
resembling the DFT-calculated results obtained using the SCAN
functional.50 Most importantly, our model predicts a stable
phase Li3.5P0.5Ge0.5S2O2, which possesses the same structure
and ordering as the DFT calculations and exhibits similar
formation energy (−178 meV per atom for the ne-tuned model
compared to −182 meV per atom from DFT). Furthermore, for
its Li-ion kinetics, the model yields an activation energy of
∼0.29 eV for Li3.5P0.5Ge0.5S2O2, as shown in Fig. 3(d). Since this
material remains unexplored experimentally, we compare the
predicted ionic conductivities with those obtained from
previous ab initio molecular dynamics (AIMD) simulations.50,68

These AIMD results exhibit discrepancies with conductivities
spanning orders of magnitude, whereas our model predicts
values that lie between these extremes while showing good
agreement in activation energies.

Given the computational efficiency of ne-tuned models,
which offers a distinct advantage over traditional, more
expensive DFT simulations, it is of signicant interest to
examine all available phases of Li3PS4 beyond the b polymorph
specically investigated in the LPGSO system, to test the
generalizability. It is known that Li3PS4 exhibits three distinct
phases at different temperatures: the room-temperature g

phase (Pmn21), which transitions to the b phase (Pnma) at 573 K,
and subsequently to the a phase (Cmcm) at 746 K.66,67,70–73 Here,
the ionic conductivity of the two high-temperature phases of
Li3PS4 (a and b) is plotted in Fig. 3(c). The predicted ionic
conductivities align closely with experimental measurements,
as evidenced by the near-overlap of theoretical and experi-
mental data. Specically, the predicted activation energies are
∼0.26 eV for the a phase and ∼0.44 eV for the b phase. These
values compare favorably to experimental values of 0.20 eV and
0.41 eV for the a and b phases, respectively. Fig. S5 illustrates
the probability density isosurface of Li ion diffusion in b-Li3PS4.
The data, which was extracted from MLIP-MD simulations
performed with our ne-tuned model, demonstrates migration
pathways in good agreement with previous analysis by Kim
et al.74

While the Pnma phase is consistently used as the host
structural model in the LPGSO system, it is important to note
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 (a) Crystal structure of Li3+xP1−xGexS4−4xO4x in the Pnma space group. Li atoms are depicted by green spheres, P/Ge atoms as purple, and
S/O atoms as dark blue. (b) Computed formation energy, Ef, as a function of composition x in Li3+xP1−xGexS4−4xO4x. Thermodynamically stable
structures are marked by black points on the convex hull. (c–e) Comparison of activation energies (Ea) and ionic conductivities (s) between our
model and reference (AIMD and/or experiments) values for (c) Li3PS4,66,67 (d) Li3.5P0.5Ge0.5S2O2,50,68 and (e) Li4GeO4 (Cmcm).69 Experimental and
AIMD reference data are plotted as lines extrapolated to high temperatures from lower-temperature measurements/simulations.
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that this phase for pure oxide Li4GeO4 is hypothetical and
metastable. According to our MLIP calculations, the Pnma
phase is about 30 meV per atom higher in energy than the
experimentally observed Cmcm phase.75 To best facilitate vali-
dating our model against experimentally relevant structures
that are not included in the training dataset, we specically
employ the Cmcm structure of Li4GeO4 to compute its kinetic
properties. As shown in Fig. 3(e), the predictions of our model
for Li-ion migration in this phase, yielding an activation energy
of 0.77 ± 0.27 eV, show excellent agreement with experimental
results of 0.81 eV, particularly in the higher temperature range
(>900 K).69 The calculated ionic conductivities show deviations
from ideal linear Arrhenius behavior at lower temperatures.
This may be attributed to an insufficient number of ion
migration events occurring in that temperature range because
of poor ionic conductivity properties of this material.

This successful application to materials with different space
group symmetries (e.g., Pmn21 and Cmcm) underscores the
generality and versatility of the ne-tuned model. The pre-
trained uMLIP provides knowledge for transfer, while ne-
tuning allows for more accurate predictions and reduced errors.
This journal is © The Royal Society of Chemistry 2025
Training from scratch vs. ne-tuning

In addition to ne-tuning, we also explored trainingMLIPs from
scratch on the same datasets for the two benchmark material
systems, NaSICON and LPGSO. Compared to ne-tuning,
training from scratch generally reaches a slightly lower accu-
racy in both energy and force predictions (Table S2). Moreover,
it is observed that models trained from scratch tend to be less
stable during MD simulations, frequently resulting in unphys-
ical behavior, e.g., the divergence of the total energy. For the
LPGSO system in particular, the absence of prior knowledge
about Li–Li interactions leads to incorrect Li–Li pair repulsion
force, which severely alters the resulting diffusion behavior and
produces unphysical MD trajectories, as plotted in Fig. S6 and
S7. More detailed analysis is in SI.
Exploring LIYBC system

In addition to sulde and oxide SEs, the Li3MX6 family of
lithium ternary halides (M = Sc, Y, In, Er, Sm–Lu; X = F, Cl,
Br)76,77 has emerged as a promising class of SSEs, owing to its
distinct advantages such as high ionic conductivity, wide
electrochemical stability window, and good mechanical prop-
erties.54,78 In this section, we ne-tuned the MACE-MP model to
J. Mater. Chem. A
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study the miscibility within the complex halide system
comprising Li3InCl6, Li3InBr6, and Li3YBr6. This forms the
partial ternary system Li3InxY1−xBr6yCl6−6y. Our investigation
specically examines compositions dened by discrete values of
x ˛ {0, 0.25, 0.5, 1} and y ˛ {0, 0.25, 0.5, 0.75, 1}, subject to the
condition that x + y $ 1, as illustrated in Fig. 4(b).

The three vertex compositions, namely Li3InCl6, Li3InBr6,
and Li3YBr6, are isostructural and have all been reported to
crystallize in a disordered C2/m space group within a cubic
close-packed (CCP) framework.53,79 The conventional cell of
each material comprises two formula units (20 atoms), with two
symmetrically inequivalent Li atoms fractionally residing at
positions with Wyckoff labels and multiplicities of 4g and 4h,
respectively, as observed in the experimentally reported struc-
tures (ICSD: 122395 (ref. 80) for Li3InBr6, 29957 (ref. 80) for
Li3YBr6).

The lowest-energy conguration for each member was
identied from 2000 symmetrically distinct enumerations
based on Ewald energies, encompassing congurations within
the conventional cell, 1 × 1 × 2, and 1 × 2 × 2 supercells. The
static lattice energies of those enumerations were then deter-
mined using the ne-tuned model. The validation results of the
ne-tuned model are shown in Fig. S8, suggesting that a dataset
of approximately 2500 samples is sufficient to train the model
effectively. This is evidenced by its lower RMSE for energy, force,
and stress, with error values of 0.6 meV per atom, 19.2 meV Å−1,
and 0.3 meV Å−3, respectively.

Fig. 4(a) depicts the ball-and-stick representation of the host
C2/m model for the Li3InxY1−xBr6yCl6−6y system. The two Li
sites, 4g and 4h, are both partially occupied. The optimized
lattice constants for each composition are listed in Table S4.
While the equilibrium Li positions in each lowest-energy
Fig. 4 (a) Crystal structure of Li3InxY1−xBr6yCl6−6y, with the compositiona
in dark green, are both fractional occupied. Y/In and Br/Cl atoms are sho
transport results of Li3InxY1−xBr6yCl6−6y, predicted using our fine-tuned
performance metrics for this material. For each composition, a solid circ
phase. The color of each circle represents the activation energy for Li-ion
(s) at 800 K.

J. Mater. Chem. A
ordering may vary with composition, the arrangement of the
[MX6]

3− building blocks remains throughout the investigated
compositional range. In each stoichiometric composition, Li
ions are found to preferentially occupy the interplanar 4g-type
sites. Conversely, the 4h sites exhibit partial occupancy,
ranging from 50% to 62.5% across different compositions.
These unoccupied 4h positions thus constitute natural inter-
stitial sites, potentially facilitating Li ion hopping. Interestingly,
in the ground-state structure of Li3In0.5Y0.5Br3Cl3, which
features an equimolar mixture of In and Y metal cations as well
as Br and Cl halides, we observed that each polyhedron is
coordinated exclusively by either Br or Cl ions, with no evidence
of mixed halide coordination within a single polyhedron.
Instead, Cl preferentially coordinates with Y, and Br preferen-
tially coordinates with In, forming pure [YCl6]

3− and [InBr6]
3−

polyhedra, respectively (Fig. 5). This preference can perhaps be
attributed to factors such as ionic size matching and specic
bond strengths between the specic M–X pairs.

The phase diagram in the pseudo-ternary Li3InCl6–Li3InBr6–
Li3YBr6 composition space is depicted in Fig. 4(b). It was found
that Li3InBr6, Li3YBr6, Li3InCl6, Li3In0.5Y0.5Br6, and Li3In0.5-
Y0.5Br3Cl3 are stable (represented by solid circles), on the convex
hull relative to their constituent vertex compositions. Other
compositions (in dashed circle) all exhibit only trivial Ehull
values, not exceeding 3 meV per atom, as detailed in Table S5.
Even without considering entropy at nite temperatures, the
low Ehull values suggest these materials are metastable and
synthesizable, so they are included in the further study of
kinetic performance.

For the lowest-energy congurations of each composition,
we performed a series of MD simulations at temperatures
ranging from 800 to 1100 K, since we observed that some
l constraint x + y$ 1. The two sites for Li atoms, 4g in light green and 4h
wn in pink and brown spheres, respectively. (b) Phase stability and ionic
model. Ionic conductivity data collected at 800 K is chosen as the

le indicates a stable phase, while a dashed circle denotes a metastable
diffusion, and the contour plot shows the predicted ionic conductivity

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 The probability density of Li ions in Li3In0.5Y0.5Br3Cl3, analyzed from MD trajectories at 800 K using GEMDAT. The isosurface level is set to
10−4 Å−1. The left panel shows the view along the a-axis, and the right panel shows the view along the b-axis. Green spheres represent host Li
sites in the ground-state structure, while white spheres indicate natural interstitial sites identified by GEMDAT, which are high probability Li-ion
positions during the MD simulations. Two distinct migration paths are identified from this analysis: red arrows indicate intraplane pathways (4h–
4h), and blue arrows indicate interplane pathways (4g–4g–4h).
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compositions tend to melt at temperatures higher than 1100 K.
Ionic conductivity data collected at 800 K is chosen as the
performance metrics for this material. The calculated activation
energy for Li ion diffusion is represented by the color in each
circle in Fig. 4(b), and the contour plot, interpolated from the
data on the tie-lines, shows the predicted ionic conductivity at
800 K. Arrhenius plots for each structure are presented in
Fig. S9. Although ionic conductivity varies among composi-
tions, all values remain the same order of magnitude, ranging
from s = 0.3 to 0.62 S cm−1 at 800 K.

The reliability of our predicted properties was validated by
comparing with previously reported AIMD results for the vertex
compositions, Li3YBr6 (ref. 81) and Li3InCl6.82 As shown in
Fig. S10, both the ionic conductivity and activation energy agree
with AIMD results. Particularly, for Li3YBr6, our predicted Ea is
0.29 eV, which agrees well AIMD result of 0.28 eV. For the case of
Li3InCl6, our predicted Ea is 0.24 eV, compared to AIMD results
of 0.20 eV. Furthermore, the differences in ionic conductivity for
both Li3YBr6 and Li3InCl6 between AIMD and our predictions
are within the same order of magnitude, with notable overlap
observed within certain temperature ranges.
Analysis of Li-ion diffusion in LIYBC system

Among the whole LIYBC system, the composition Li3In0.5Y0.5-
Br3Cl3 shows the best ionic conductivity of ∼0.62 S cm−1 at 800
K, along with an activation energy of 0.28 eV. Other two mixed
compositions, Li3InBr3Cl3 and Li3In0.5Y0.5Br6 also reaches the
highest Li-ion conductivities 0.51 S cm−1 and 0.54 S cm−1 in
each tie-line. This demonstrates the great potential of those
mixed compositions in Li3MX6 systems for application as solid
This journal is © The Royal Society of Chemistry 2025
electrolytes. In addition, the vertex composition Li3InCl6 with
conductivity of 0.57 S cm−1 also exhibits good performance.

Here, we investigate the diffusion mechanism of Li ions in
Li3In0.5Y0.5Br3Cl3 using MD simulation results at 800 K, with
trajectory analysis performed by the GEMDAT package. Fig. 5
presents the three-dimensional probability density distribution
of Li ions, where an isosurface value of 10−4 Å−3 was employed
for visualization. The green spheres correspond to crystallo-
graphic host Li sites in the ground-state structure, which are
mapped from the fully occupied 4g and 50% occupied 4h-type
Li positions observed in experimental structures. The GEM-
DAT analysis of Li ion trajectories reveals that Li ions frequently
visit interstitial sites adjacent to the host 4h-type sites, as
indicated by the gray spheres in Fig. 5. These important inter-
stitial sites, including those corresponding to unoccupied 4h
positions, demonstrate crucial intermediates in the Li ion
diffusion process within this material and are likely generaliz-
able to other SSE systems.83

Two prevalent Li ion migration pathways are identied by
analyzing the connectivity within the Li probability density
isosurfaces and their respective occupation sites. The rst
pathway represents an intraplanar route connecting 4h sites
within the ab plane, as indicated by the red arrows in the le
panel of Fig. 5. The hopping of a Li ion from one host 4h site
(labeled h1) to another (h2) is facilitated by three intermediate
interstitial sites, i1, i2, and i3, forming a characteristic zigzag
trajectory. Notably, i2 corresponds to a natural interstitial site
derived from an unoccupied 4h position within the host lattice,
while i1 and i3 are other symmetrically equivalent interstitial
sites. The second representative pathway involves cross-plane
J. Mater. Chem. A
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migration (connecting intraplanar to interplanar regions), as
shown by the blue arrows in the right panel of Fig. 5, illustrating
migration within the ac plane. This migration path consists of
a hop from host 4h (labeled h3) to host 4g (g1), bridged by an
interstitial site (i4). The hopping then extends from g1 to g2 in
the neighboring planes, assisted by additional intermediate
sites i5 and i6, where the latter (i6) is a natural interstitial 4h-type
site within the structure. These two pathways discussed above
are also consistent with the previous study on Li3MX6 family.82

We also validate our results by performing AIMD simulations
and the results are shown in Fig. S12 and S13. The probability
density plots of Li ions are qualitatively consistent between
MLIP-MD and AIMD.

We further quantify the Li ion transport properties by
computing diffusivities and corresponding activation energies
for the identied migration pathways. The planar transport
characteristics (ab- and ac-plane), along with the overall three-
dimensional results for comparison, are presented in Fig. S11
and Table S5. The diffusivity within a single plane surely does
not represent the diffusivity along the entire migration pathway,
while we use it here only for a straightforward comparison. For
each composition, the diffusivities along different directions
are generally within half an order of magnitude. The differences
in corresponding activation energies are also comparable to the
uncertainties in these activation energies. These results indicate
that there is no clear directional preference for Li-ion diffusion
in the LIYBC system.

Discussion and conclusions

In this work, we developed a comprehensive workow for con-
structing MLIPs for disordered multi-component SSEs effi-
ciently, which signicantly reduces the time required for
materials simulations from several months to a few days. The
effectiveness of this approach is demonstrated through
benchmarking on two complex materials systems, Na1+xZr2Six-
P3−xO12 and Li3+xP1−xGexS4−4xO4x. Performing MD simulations
with a pre-trained uMLIP, rather than relying on AIMD, offers
greater efficiency in building the training dataset for these
systems. As compared in Fig. S14, for a system with the same
number of atoms, running MLIP-MD with GPU can reach much
higher efficiency, with almost the same accuracy as AIMD.
Moreover, the current system sizes may not fully utilize the
computational capacity of running MLIPs on GPUs. Larger
systems are therefore expected to be handled with comparable
efficiency. For each system, a dataset of approximately 2500
congurations was constructed. This dataset was sufficient to
ne-tune the pre-trained PBE-level uMLIP (MACE-MP) to
specic chemical spaces. High-delity SCAN data and a multi-
head ne-tuning strategy were used in this process. Impor-
tantly, it is still recommended to perform convergence tests on
the training dataset size. Aer ne-tuning with this proposed
strategy, the formation energies and convex hulls can be ob-
tained with low computational cost while retaining high accu-
racy. Overall, our model shows excellent agreement with
previous experimental observations and DFT predictions of
thermodynamic phase behavior. It also aligns well with
J. Mater. Chem. A
experimental and AIMD results for Li/Na-ion kinetics, such as
ionic conductivities and activation energies.

This agreement demonstrates that ne-tuning is an effective
strategy for developing accurate MLIPs. Beyond substantially
reducing computational costs, ne-tuning a uMLIP can also
mitigate its sensitivity to the training data compared to training
from scratch, thereby yielding improved stability and general-
izability. Moreover, ne-tuning can help address systematic
soening observed in uMLIPs.84 Furthermore, by incorporating
data computed at higher levels of theory, such as meta-GGA,
this approach further enhances the delity of the resulting
potential.

Building on the insights gained from benchmarking studies,
we applied our workow to a previously unexplored halide SSEs
Li3InxY1−xBr6yCl6−6ywith x + y$ 1. The anion sublattice enables
both two-dimensional intralayer and three-dimensional cross-
layer Li-ion migration pathways, offering desirable Li/Na-ion
kinetics. Among the studied compositions, Li3In0.5Y0.5Br3Cl3
exhibits the highest ionic conductivity, reaching 0.62 S cm−1 at
800 K. Other compositions within the compositional space also
demonstrate favorable Li-ion kinetics, with conductivity lower
by one order of magnitude compared to Li3In0.5Y0.5Br3Cl3.
Moreover, the polyanion mixing introduces congurational
entropy, which could further enhance ion transport by reducing
activation energies.85 These results suggest that the
Li3InxY1−xBr6yCl6−6y system is promising, and merits further
experimental exploration.

The MD trajectories reveal that the Li-ion diffusion in LIYBC
involves both intralayer and interlayer Li-ion migration path-
ways. However, preference in pathways is different for different
compositions. These variations arise from the distinct ground-
state arrangements of anions/polyanions in each composition,
which can inuence factors such as diffusion bottlenecks and
percolation of ion-conducting paths. Achieving optimal
conductivity requires a holistic design strategy that integrates
multiple factors.86 Further investigation into the controlling
factors for ionic conductivity within this system is of great
importance for guiding future material design.

To summarize, we have demonstrated that our workow for
developing an MLIP combining structural enumeration with
ne-tuning of pre-trained uMLIPs enables rapid and accurate
exploration of complex compositional and congurational
spaces. We expect that this approach will be broadly applicable
to other SSEs, providing a powerful computational framework
to accelerate the discovery and optimization of the next-
generation solid state batteries. Furthermore, MLIPs offer
signicant avenues for future exploration, including the incor-
poration of error quantication, model distillation to enhance
accuracy, and further acceleration of simulations.

Methodology

DFT calculations were performed using the Vienna ab initio
Simulation Package (VASP), version 6.3.2.87,88 All structures were
selected from MD trajectories using MACE-MP-0a. The
exchange–correlation energy in DFT was approximated by the
strongly constrained and appropriately normed (SCAN) semi-
This journal is © The Royal Society of Chemistry 2025
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local meta-generalized gradient approximation (meta-GGA)
functional.61 Wave functions were expanded in terms of plane-
wave basis set, truncated at a kinetic energy cutoff of 520 eV.
Projector Augmented Wave (PAW) potentials were employed to
describe core–valence electron interactions.89 The PAW
(PBE_54) potentials used were Na (19 Sep 2006, 2p63s1), Zr (04
Jan 2005, 4s24p64d25s2), Si (05 Jan 2001, 3s23p2), P (06 Sep 2000,
3s23p3), Li (10 Sep 2004, 1s22s1), Ge (03 Jul 2007, 3d104s24p2), S
(06 Sep 2000, 3s23p4), Y (25 May 2007, 4s24p65s24d1), In (06 Sep
2000, 4d105s25p1), Cl (06 Sep 2000, 3s23p5), Br (06 Sep 2000,
4s24p5), and O (08 Apr 2002, 2s22p4). The rst Brillouin zone was
integrated using a G-centered Monkhorst–Pack homogeneous
sampling with spacing of ∼0.2 Å−1 in each lattice direction.
Total energies were converged within 10−5 eV per cell during the
electronic minimization, without preserving any symmetry.

The pre-trained model used in this work is the medium-size
MACE-MP-0a, trained on the MPTraj dataset.14 To focus on the
effectiveness of our ne-tuning strategy, we restrict our
discussion to MACE-MP-0a, although comparisons with other
pre-trained uMLIPs were also conducted.

We performed multi-head ne-tuning on this model, rather
than naive ne-tuning, to avoid catastrophic forgetting.29 The
model was trained for a maximum of 500 epochs, employing an
early stopping strategy if the validation loss did not improve for
20 consecutive epochs. The learning rate was set to 0.01.

For comparison, we also trained models from scratch, using
an architecture closely aligned with MACE-MP-0a (medium
version). Specically, we adopted a message passing framework
with 128 hidden channels, 2 interaction layers, a maximum
correlation order of 3, and a radial cutoff of 5.0 Å. The training
setup for models trained from scratch utilized the same learning
rate and early stopping settings as the ne-tuned models.

To evaluate ionic conductivity properties, we used 2 × 2 × 2
supercell models for all systems under investigation. MD
simulations were performed in the canonical (NVT) ensemble,
using a Berendsen thermostat90 to control the temperature. For
temperatures above 800 K, each simulation was run for 500 ps,
which was deemed sufficient to collect statistics on ion
hopping. To ensure that the system reached equilibrium, the
initial 100 ps of the trajectory was discarded, and the remaining
400 ps was used for the diffusion analysis. For temperatures
below 800 K, longer simulations (1 ns) were conducted to ensure
adequate sampling. At these lower temperatures, the rst 200 ps
were excluded from further analysis.

The temperature-dependent mean squared displacement
(MSD) of mobile ions of interest was calculated from their
trajectories using the pymatgen package91 based on the
equation:

MSDðT ; tÞ ¼ 1

N

XN

i¼1

jRiðtÞ � Rið0Þj2 (1)

where N is the number of mobile ions within the simulation
cell, and Ri(t) is the position vector of the i-th ion at time t. The
tracer diffusion coefficient, D(T), is then extracted from the
linear slope of the MSD as a function of time, according to the
Einstein relation:
This journal is © The Royal Society of Chemistry 2025
DðTÞ ¼ 1

2n
lim
t/N

d

dt
MSDðT ; tÞ (2)

where n represents the dimensionality of the diffusion path (n=

3 for three-dimensional trajectories). Specically, for the esti-
mation of planar diffusion (Fig. S11), we use n = 2 and project
the trajectories onto the corresponding plane. The temperature
dependence of the diffusivity was then tted to an Arrhenius
relationship to determine the activation energy, Ea, for ionic
migration:

D(T) = D0 e
−Ea/(kBT) (3)

where D0 is the pre-exponential factor and kB is the Boltzmann
constant. The error bars of Ea in the gures were estimated from
the standard deviation of this tting. Furthermore, the ionic
conductivity, s(T), is related to the diffusion coefficient by the
Nernst–Einstein equation:

sðTÞ ¼ Nq2

VkBTHr

DðTÞ (4)

Here, V is the volume of the simulation cell, N is the number of
mobile ions, q is the charge of the mobile ion, and Hr is the
Haven ratio. The Haven ratio accounts for correlations between
ionic motions, which are neglected in our analysis by assuming
Hr = 1.
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foundation model for atomistic materials chemistry, arXiv,
2024, preprint, arXiv:2401.00096 [physics.chem-ph], DOI:
10.48550/arXiv.2401.00096, http://arxiv.org/abs/2401.00096.

30 X. Fu, B. M. Wood, L. Barroso-Luque, D. S. Levine, M. Gao,
M. Dzamba and C. L. Zitnick, Learning Smooth and
Expressive Interatomic Potentials for Physical Property
Prediction, arXiv, 2025, preprint, arXiv:2502.12147
[physics.comp-ph], DOI: 10.48550/arXiv.2502.12147, http://
arxiv.org/abs/2502.12147.

31 S. Gong, Y. Zhang, Z. Mu, Z. Pu, H. Wang, X. Han, Z. Yu,
M. Chen, T. Zheng, Z. Wang, L. Chen, Z. Yang, X. Wu,
S. Shi, W. Gao, W. Yan and L. Xiang, Nat. Mach. Intell.,
2025, 7, 543–552.

32 T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam and
C. Masquelier, Nat. Mater., 2019, 18, 1278–1291.

33 J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour,
S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp,
L. Giordano and Y. Shao-Horn, Chem. Rev., 2016, 116, 140–
162.
This journal is © The Royal Society of Chemistry 2025

https://doi.org/10.48550/arXiv.2410.12771
https://doi.org/10.48550/arXiv.2410.12771
http://arxiv.org/abs/2410.12771
https://doi.org/10.48550/arXiv.2503.04070
http://arxiv.org/abs/2503.04070
https://doi.org/10.48550/arXiv.2401.00096
http://arxiv.org/abs/2401.00096
https://doi.org/10.48550/arXiv.2502.12147
http://arxiv.org/abs/2502.12147
http://arxiv.org/abs/2502.12147
https://doi.org/10.1039/d5ta05321h


Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 0
5 

Se
pt

em
be

r 
20

25
. D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

on
 9

/2
4/

20
25

 7
:3

9:
24

 A
M

. 
View Article Online
34 Q. Zhao, S. Stalin, C.-Z. Zhao and L. A. Archer, Nat. Rev.
Mater., 2020, 5, 229–252.

35 Y. He, Q. Chen and W. Lai, Solid State Ionics, 2023, 399,
116298.

36 L. Xu, W. Shao, H. Jin and Q. Wang, J. Phys. Chem. C, 2023,
127, 24106–24117.

37 A. P. Maltsev, I. V. Chepkasov and A. R. Oganov, ACS Appl.
Mater. Interfaces, 2023, 15, 42511–42519.

38 J. Choi, B. Jun and Y. Jung, Chem. Eng. J., 2025, 516, 163847.
39 Z. A. H. Goodwin, M. B. Wenny, J. H. Yang, A. Cepellotti,

J. Ding, K. Bystrom, B. R. Duschatko, A. Johansson, L. Sun,
S. Batzner, A. Musaelian, J. A. Mason, B. Kozinsky and
N. Molinari, J. Phys. Chem. Lett., 2024, 15, 7539–7547.

40 J. Wang, A. A. Panchal, G. S. Gautam and P. Canepa, J. Mater.
Chem. A, 2022, 10, 19732–19742.

41 A. Seth, R. P. Kulkarni and G. S. Gautam, ACS Mater. Au,
2025, 5, 458–468.

42 A. C. C. Dutra, B. A. Goldmann, M. S. Islam and J. A. Dawson,
Nat. Rev. Mater., 2025, 1–18.

43 J. B. Goodenough, H. Y.-P. Hong and J. A. Kafalas,Mater. Res.
Bull., 1976, 11, 203–220.

44 Z. Deng, T. P. Mishra, E. Mahayoni, Q. Ma, A. J. K. Tieu,
O. Guillon, J.-N. Chotard, V. Seznec, A. K. Cheetham,
C. Masquelier, G. S. Gautam and P. Canepa, Nat. Commun.,
2022, 13, 4470.

45 Z. Wang, S. Park, Z. Deng, D. Carlier, J.-N. Chotard,
L. Croguennec, G. S. Gautam, A. K. Cheetham,
C. Masquelier and P. Canepa, J. Mater. Chem. A, 2022, 10,
209–217.

46 Z. Wang, T. P. Mishra, W. Xie, Z. Deng, G. S. Gautam,
A. K. Cheetham and P. Canepa, ACS Mater. Lett., 2023, 5,
2499–2507.

47 B. Ouyang, J. Wang, T. He, C. J. Bartel, H. Huo, Y. Wang,
V. Lacivita, H. Kim and G. Ceder, Nat. Commun., 2021, 12,
5752.

48 Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz and
J. T. S. Irvine, J. Mater. Chem. A, 2019, 7766–7776.

49 J. P. Boilot, G. Collin and P. Colomban, J. Solid State Chem.,
1988, 73, 160–171.

50 Y. Li, Z. Deng and C. Chen, Chem. Mater., 2024, 36, 7877–
7886.

51 Y. Tomita, A. Fuji-i, H. Ohki, K. Yamada and T. Okuda, Chem.
Lett., 1998, 27, 223–224.

52 K. Yamada, K. Kumano and T. Okuda, Solid State Ionics,
2006, 177, 1691–1695.

53 Y. Tomita, H. Matsushita, K. Kobayashi, Y. Maeda and
K. Yamada, Solid State Ionics, 2008, 179, 867–870.

54 X. Li, J. Liang, X. Yang, K. R. Adair, C. Wang, F. Zhao and
X. Sun, Energy Environ. Sci., 2020, 13, 1429–1461.

55 J. O. Bonsu, A. Bhadra and D. Kundu, Adv. Sci., 2024, 11,
2403208.

56 R. E. Skyner, J. B. O. Mitchell and C. R. Groom,
CrystEngComm, 2017, 19, 641–652.

57 P. Molaiyan, S. E. Mailhiot, K. Voges, A. M. Kantola, T. Hu,
P. Michalowski, A. Kwade, V.-V. Telkki and U. Lassi, Mater.
Des., 2023, 227, 111690.
This journal is © The Royal Society of Chemistry 2025
58 X. Li, J. Liang, J. Luo, M. N. Banis, C. Wang, W. Li, S. Deng,
C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu,
H. Huang, R. Li, K. R. Adair and X. Sun, Energy Environ.
Sci., 2019, 12, 2665–2671.

59 F. Stainer and H. M. R. Wilkening, Phys. Rev. B, 2024, 109,
174304.

60 F. Musil, A. Grisa, A. P. Bartók, C. Ortner, G. Csányi and
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