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1 NaSICON

Table S1: Ionic conductivity at 673 K and activation energy of Na3Zr2Si2PO12, comparing results
obtained from the MACE-MP model and fine-tuned models (trained on different sizes of data) with
experimental measurements.

Source σ300◦C (S/cm) Ea (eV)

MACE-MP 0.170 0.15± 0.01

Fine-tuning

50 0.077 0.27± 0.01
100 0.065 0.30± 0.06
500 0.074 0.27± 0.03
1000 0.058 0.30± 0.03
2500 0.080 0.29± 0.01

experiment1 0.20 0.29
experiment2 0.14 0.28
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Fig. S1: Arrhenius plots of Na-ion diffusion in Na3Zr2Si2PO12 calculated using fine-tuned models
(varying dataset sizes) and the MACE-MP model.
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Fig. S2: The probability density of Na ions in Na3Zr2Si2PO12, analyzed from MLIP-MD trajectory
at 800 K using GEMDAT. The isosurface level is set to 10−4 Å−1. For better visualization purposes,
the Na sites are not plotted.
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Fig. S3: The arrangements of PO4/SiO4 polyhedrals in a 4 × 4 × 4 supercell of Na3Zr2Si2PO12.
The atoms are not plotted for better visualization. Left: the ground state structure used to run
MD in this work. Right: two examples of disordered structures generated by Monte Carlo.

2 LPGSO
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Fig. S4: Convergence test on the training datasets for the Li3+xP1-xGexS4-4xO4x system.
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Fig. S5: The probability density of Li ions in Li3PS4, analyzed from MLIP-MD trajectory at 800
K using GEMDAT. The isosurface level is set to 10−4 Å−1. The green spheres are the ground-state
sites. The white spheres are the intermediate sites analyzed using Gemdat.

3 Comparison between fine-tuning and training from

scratch

Table S2: Comparison of validation performance between fine-tuning model and the model trained
from scratch for the NaSICON and LPGSO systems. The model trained from scratch is based on
MACE architecture, using a similar hyperparameter setting for fine-tuning.

Material System Training Method RMSE (E/meV/atom) RMSE (F/meV/Å)

NaSICON
Fine-tuning 0.3 14.4
Training from scratch 1.2 19.2

LPGSO
Fine-tuning 0.6 36.5
Training from scratch 0.9 56.5
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Fig. S6: The pair distribution function g(r) from correct MD trajectories of Li4GeO4 at 800 K,
simulated by fine-tuned models. The dash line (at 1.4 Å) indicates the atomic radius of Li.

Fig. S7: The pair distribution function g(r) from incorrect MD trajectories of Li4GeO4 at 800 K,
simulated by models trained from scratch. The dash line (at 1.4 Å) indicates the atomic radius of
Li.

We compared the performance of fine-tuning and training from scratch for both NaSICON

and LPGSO systems. The model trained from scratch adopts the MACE architecture and
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uses hyperparameters consistent with those employed for fine-tuning. Both models were

trained on the same dataset with 2,500 data.

While overall validation errors are comparable across methods (Table S2), the fine-tuned

model displays considerably reduced energy and force errors, suggesting improved predictive

accuracy, for both the NASICON and LPGSO systems. However, in terms of kinetic prop-

erties, the model trained from scratch exhibits significant limitations due to its insufficient

training data. During MD simulations, this model often leads to unphysical diverging ener-

gies and an exploded system, as it encounters atomic configurations outside its training data

distribution.

Further evidence for the unreliability of the model trained from scratch is provided by its

inaccurate representation of the pair distribution function in LPGSO system, as illustrated

in Fig. S7. This unphysical behavior is characterized by abnormal short Li–Li distances,

peaking at approximately 0.7 Å. Consequently, such unrealistic Li-Li distances lead to the

deviated diffusion pathways of Li ions and meaningless diffusivities.

As a comparison, the MD simulation with a fine-tuned model gives a more reasonable

pair distribution function in Fig. S6, where no Li-Li pairs appear with distances smaller

than 1 Å. Fine-tuning benefits from prior knowledge embedded in the uMLIPs, allowing

it to generalize better and remain stable even in extrapolative regimes, and to work with

training data from different functionals.
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4 LIYBC
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Fig. S8: Convergence test on the training datasets for Li3InxY1-xBr6yCl6-6y.

Table S3: Energy above hull (Ehull) and activation energy (Ea) for Li3InxY1-xBr6yCl6-6y, as
determined by the simulation using the fine-tuned model. “stable” indicates that the composition
has a configuration on the convex hull.

(x, y) Composition Ehull (meV/atom ) Ea (eV)
(1,1) Li3InBr6 stable 0.33
(1,0.75) Li3InBr4Cl2 1 0.31
(1,0.5) Li3InBr3Cl3 1 0.23
(1,0.25) Li3InBr2Cl4 1 0.37
(1,0) Li3InCl6 stable 0.24
(0.75,0.25) Li3In0.75Y0.25Br2Cl4 3 0.32
(0.5,0.5) Li3In0.5Y0.5Br3Cl3 stable 0.31
(0.25,0.75) Li3In0.25Y0.75Br4Cl2 2 0.34
(0,1) Li3YBr6 stable 0.29
(0.25,1) Li3In0.25Y0.75Br6 1 0.30
(0.5,1) Li3In0.5Y0.5Br6 stable 0.28
(0.75,1) Li3In0.75Y0.25Br6 1 0.26
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Table S4: Lattice parameters of crystal structures for each composition in Li3InxY1-xBr6yCl6-6y,
optimized by the fine-tuned model.

(x, y) Composition a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)
(1,1) Li12In4Br24 6.777 11.716 13.612 90.0 108.3 90.0
(1,0.75) Li6In2Br8Cl4 6.755 6.708 11.556 90.0 90.3 109.4
(1,0.5) Li6In2Br6Cl6 6.641 6.601 11.344 90.0 90.0 109.1
(1,0.25) Li6In2Br4Cl8 6.570 6.528 11.170 90.1 90.7 109.9
(1,0) Li6In2Cl12 6.419 11.028 6.423 90.0 109.2 90.0
(0.75,0.25) Li9In3YBr6Cl12 6.808 11.760 13.081 90.0 79.7 90.0
(0.5,0.5) Li6InYBr6Cl6 6.665 6.676 11.418 90.0 90.0 109.9
(0.25,0.75) Li12InY3Br18Cl6 6.800 11.713 12.864 89.5 80.0 89.8
(0,1) Li6Y2Br12 6.892 11.909 6.845 90.0 109.8 90.0
(0.25,1) Li4InY3Br24 6.865 11.860 13.068 90.0 80.0 90.0
(0.5,1) Li12In2Y2Br24 6.845 11.787 13.053 90.0 79.7 90.0
(0.75,1) Li12In3YBr24 6.808 11.760 13.081 90.0 79.7 90.0
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Fig. S9: Arrhenius plots for the compositions in Li3InxY1-xBr6yCl6-6y. Left: Li3InBr6yCl6-6y ;
Middle: Li3InxY1-xBr6 ; Right: Li3InxY1-xBr6yCl6-6y with x+ y = 1.
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Fig. S10: Arrhenius plots of Li3InCl6 and Li3YBr6, compared with AIMD results.3,4

Fig. S11: (a) Computed total diffusivity, and diffusivities within ab- and ac-planes, and (b) the
corresponding activation energies for various compositions of Li3InxY1-xBr6yCl6-6y, labeled as (x, y).
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Table S5: The diffusivity D and activation energy Ea projected in ab-plane and ac-plane for each
composition in LIYBC system.

(x, y) Composition
ab-plane ac-plane

D (cm2/s) Ea (eV) D (cm2/s) Ea (eV)
(1,1) Li3InBr6 1.41e-05 0.249 ± 0.043 1.36e-05 0.244 ± 0.012
(1,0.75) Li3InBr4Cl2 1.18e-05 0.292 ± 0.047 1.33e-05 0.335 ± 0.051
(1,0.5) Li3InBr3Cl3 1.31e-05 0.305 ± 0.037 1.16e-05 0.281 ± 0.041
(1,0.25) Li3InBr2Cl4 1.04e-05 0.402 ± 0.044 1.11e-05 0.323 ± 0.017
(1,0) Li3InCl6 1.19e-05 0.352 ± 0.044 1.51e-05 0.259 ± 0.053
(0.75,0.25) Li3In0.75Y0.25Br2Cl4 9.16e-06 0.374 ± 0.001 1.04e-05 0.296 ± 0.068
(0.5,0.5) Li3In0.5Y0.5Br3Cl3 1.91e-05 0.308 ± 0.023 2.24e-05 0.296 ± 0.054
(0.25,0.75) Li3In0.25Y0.75Br4Cl2 1.15e-05 0.368 ± 0.045 1.46e-05 0.345 ± 0.002
(0,1) Li3YBr6 2.40e-05 0.236 ± 0.040 2.42e-05 0.283 ± 0.081
(0.25,1) Li3In0.25Y0.75Br6 9.81e-06 0.295 ± 0.034 1.20e-05 0.288 ± 0.015
(0.5,1) Li3In0.5Y0.5Br6 2.02e-05 0.292 ± 0.004 2.17e-05 0.272 ± 0.033
(0.75,1) Li3In0.75Y0.25Br6 1.28e-05 0.272 ± 0.026 1.12e-05 0.331 ± 0.008
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Fig. S12: The probability density of Li ions in Li3In0.5Y0.5Br3Cl3, analyzed from a 150 ps-AIMD
trajectory at 800 K using GEMDAT. PBE functional is used. The isosurface level is set to 10−4

Å−1. The left panel shows the view along the a-axis, and the right panel shows the view along
the b-axis. Green spheres represent host Li sites in the ground-state structure, while white spheres
indicate natural interstitial sites identified by GEMDAT, which correspond to high-probability Li-
ion positions during the MD simulations. Two distinct migration paths are identified from the
analysis, indicated by the arrows.
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Fig. S13: The probability density of Li ions in Li3In0.5Y0.5Br3Cl3, analyzed from a 11 ps-AIMD
trajectory at 800 K using GEMDAT. SCAN functional is used. The isosurface level is set to 10−4

Å−1. The left panel shows the view along the a-axis, and the right panel shows the view along
the b-axis. Green spheres represent host Li sites in the ground-state structure, while white spheres
indicate natural interstitial sites identified by GEMDAT, which correspond to high-probability Li-
ion positions during the MD simulations. Two distinct migration paths are identified from the
analysis, indicated by the arrows.
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5 Discussion
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Fig. S14: A comparison of the computational cost for each ps between AIMD and MLIP-MD.
All AIMD simulations were performed on CPUs using two nodes (each equipped with two of Intel
8452Y) with 72 CPU cores, while MLIP simulations were conducted on NVIDIA A40 GPU.

From Figure S14, AIMD simulations require 3–4 orders of magnitude more computational

time than MLIP-MD. Moreover, as the number of atoms increases, the CPU-based AIMD

times grow approximately linearly, whereas the GPU-based MLIP times do not scale strictly

linearly. The A40 GPU has not yet reached its performance limit, and the H100 GPU

appears capable of handling even larger systems without a significant increase in time per

picosecond.
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